
Security of Computer Systems May 25, 2015

PART 1

Exercise 1.1

Consider a shift cipher in which each letter of the plaintext is encrypted under a fixed key.
Given the ciphertext FHRR, what is the probability that the plaintext is, respectively, WOOD
or WIND? What happens to the probabilities if the key is changed (at random) any time we
encrypt a letter? Justify your answers.

Exercise 1.2

Consider the following protocol that authenticates A to B:

A → B : B,SignA(tA)

where tA is a time-stamp from A. Time-stamps are accepted, as usual, if they are received inside
an acceptance window and are cached by the recipient in order to detect replays.

1. Show a replay attack that allows an intruder to impersonate A with another user C;

2. Illustrate a simple modification of the protocol that fixes the previous problem and show
how the attack is prevented.

Exercise 1.3

A flawed RSA setup initializes the cipher with n = 11 ∗ p, where p is a large prime (> 1024
bits). Describe in detail an attack that computes the private exponent a given n and the public
exponent b.

Security of Computer Systems May 25, 2015

PART 2

Exercise 2.1

Program pwd checks the password given on the command line. If we try to increase the length
of the password we observe the following output:

$./pwd AAAAAAAAAAAAA

ACCESS DENIED!

$./pwd AAAAAAAAAAAAAAAA

ACCESS DENIED!

$./pwd AAAAAAAAAAAAAAAAAA

*** stack smashing detected ***: ./pwd terminated

Aborted (core dumped)

1. Explain in detail what is going on and what kind of attack is prevented by the observed
security mechanism.

2. What happens if the mechanism is turned off?

Exercise 2.2

Consider a web site which is vulnerable to a reflected XSS such as:

http://mysite.com/login.php?name=<script>alert("Hi there!");</script>

What happens when the page is loaded? Describe an attack that leaks the victim cookies and
submits them to the attacker web site.

Exercise 2.3

Program name reads a name from the standard input and prints a greetings message:

$./name

Please insert your name: r1x

Hello r1x

An attacker discover the following behavior:

$ python -c "print ’AAAA%7\$08x’" | ./name

Please insert your name: Hello AAAA41414141

$ python -c "print ’\xd0\x85\x04\x08%7\$08x’" | ./name

Please insert your name: Hello 080485d0

$ python -c "print ’\xd0\x85\x04\x08%7\$s’" | ./name

Please insert your name: Hello PWDw3lld0ne

$

What is going on? What is probably the cause of the problem and what is a possible fix?

