
1/30

Security II - CSRF & XSSI

Stefano Calzavara

Università Ca’ Foscari Venezia

February 24, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



2/30

CSRF: Recap

Attacker Client Server

Login request

Cookies

Page request

Malicious HTML

Payment with cookies

Payment done!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



3/30

How to Prevent CSRF?

CSRF is enabled by the attachment of session cookies to HTTP requests
forged by malicious pages.

Server-Side Fixes

Do not authenticate requests based on cookies alone: there are many
different techniques, each with pros and cons [1].

Client-Side Fixes

Change the way cookies work: modern browsers offer a native protection
mechanism via the SameSite cookie attribute.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



4/30

Referer Checking

A possible defence against CSRF is checking the content of the Referer

header of each security-sensitive HTTP request. This header contains the
URL of the page which sent the request.

Alert!

This is effective, yet there are at least two problematic cases:

1 some legitimate HTTP requests might lack the Referer header

2 some legitimate HTTP requests might come with an unexpected
value of the Referer header

Do you see why this might happen?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



5/30

Referer Checking

Ensure that your checks over the Referer value are appropriate!

Example

Let us assume you want to protect www.good.com:

notice that the scheme must be part of the check, e.g., check for
https://www.good.com

a smart attacker could try to bypass this check by sending HTTP
requests from https://www.good.com.evil.com

beware of untrusted subdomains like evil.good.com

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



6/30

Origin Checking

Rather than checking the value of the Referer header, one can check
the value of Origin header (from CORS)

privacy-friendly version of Referer, which can be stripped away by
benign websites using Referer Policy

always sent along with XHR requests

in modern browsers: also sent in cross-origin POST requests

In general, Origin checking should be preferred over Referer checking, but
the two mechanisms share similar limitations.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



7/30

Custom Headers

Another defence relies on custom headers, e.g., CSRF-Protection: 1.
The presence of the header suffices, since SOP prevents the inclusion of
custom headers on cross-origin requests.

Alert!

Compared to Referer / Origin checking, this mechanism is simpler to
implement correctly, but it is also less flexible:

restricts security-sensitive requests to same-origin pages (yet this can
be relaxed by using CORS)

requires the web application logic to be built on top of JS and XHR

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



8/30

Secret Tokens

The most common defence against CSRF deployed in the wild is the
inclusion of secret tokens as part of security-sensitive requests.

Example

<form method="post" action="/items/12345">

<input type="submit" name="like" value="1"/>

<input type="hidden" name="token" value="ff34821b"/>

</form>

The expected value of the secret token is typically stored in the user’s
session at the server side.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



9/30

Secret Tokens

This works because security-sensitive requests are not authenticated by
the cookies alone:

the attacker cannot read content from the DOM of a page on
another origin, hence cannot access the token from the form

the attacker can force the browser into sending an HTTP request
with the session cookies, but will not be able to attach the right
token to it as a parameter

tokens offer better flexibility than header-based approaches: they are
the most popular defence against CSRF as of now and are supported
by many frameworks

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



10/30

Popular Pattern: Double Submit

The double submit pattern is a popular approach to the use of tokens:

the token is still embedded as a parameter of each sensitive HTTP
request, as in the previous example, but the right value of the token
is stored inside a cookie

every time a sensitive HTTP request is received, the server checks
that the value of the cookie matches the value of the parameter

This is particularly useful when sessions rely just on client-side state.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



11/30

Double Submit: Cookie Confidentiality

Since the double submit pattern stores a secret token inside a cookie, the
confidentiality of the cookie must be ensured:

mark the cookie with the Secure attribute to prevent its disclosure

perhaps surprisingly, notice that the HttpOnly attribute does not
provide any help here!

No HttpOnly?

In case of XSS, a malicious script can read the token from the DOM

Tokens are normally attached to forms by JS accessing the cookie

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



12/30

Double Submit: Cookie Integrity

Recall that cookies offer no integrity guarantee against network attackers
in their default configuration:

consider the use of the Secure- prefix

to protect legacy browsers lacking support for cookie prefixes, ensure
the token is generated from a session-dependent secret

otherwise, the attacker’s token could be forced into the victim’s
browser, i.e., the victim’s session would be unprotected

Do you see how a possible attack would work?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



13/30

SameSite Cookies

Cookies marked with the SameSite attribute can be configured so that
they are not attached to cross-site requests:

“site” = registrable domain, e.g., google.com and its subdomains

SameSite=Strict: applies this policy to every HTTP request

SameSite=Lax: relaxes this restriction in the case of top-level
navigations with a safe method, e.g., resulting from clicking a link

This defence does not offer protection to legacy browsers, hence also
traditional defences like tokens should be implemented!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



14/30

Migrating to SameSite Cookies

While the SameSite attribute is widely supported, it has unfortunately
not been largely adopted by developers:

browser vendors discussed the idea of automatically enforcing the
attribute, with Google Chrome taking the lead on this (version 80)

Google Chrome now marks all cookie as SameSite=Lax by default

if web developers do not want this new default behaviour, they can
mark their cookies as SameSite=None

cookies marked as SameSite=None must also be marked Secure

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



15/30

Login CSRF

If the login form of a web application is not protected against CSRF, the
attacker can force the victim into authenticating using the attacker’s
account: this attack is known as login CSRF.

<form action="https://www.good.com/login" method="POST">

<input name="username" value="attacker">

<input name="password" value="ev1l.pwd">

</form>

<script>document.forms[0].submit()</script>

This attack sounds bizarre! Can you figure out cases where this is a real
security problem?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



16/30

The Dangers of Login CSRF

Login CSRF is not always dangerous, yet...

Example

Since google.com stores all the search history of authenticated users, an
attacker can exploit a login CSRF on google.com to access the complete
search history of the victim.

Example

Since paypal.com binds a credit card number to a personal account, an
attacker can exploit a login CSRF on paypal.com to leak the credit card
number of the victim.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



17/30

Preventing Login CSRF

To prevent login CSRF, you can rely on existing CSRF defences:

header checks upon login form submission: like traditional CSRF,
also login CSRF is enabled by cross-site requests

secret tokens in the login form: since login CSRF happens before the
session, you must setup an unauthenticated session for the token

SameSite cookies: require the presence of a SameSite cookie upon
login form submission. This solution is always effective against web
attackers, but what about network attackers?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



18/30

CSRF Prevention: Summary

Observe that:

Checking the content of the Referer / Origin header or just the
presence of custom headers might work, but this is often impractical

Secret tokens are better for most applications, but implementation is
not straightforward. Most importantly, the security of tokens relies
on a correct enumeration of all security-sensitive requests [2]

SameSite cookies are a simple and elegant solution against CSRF,
which solves the issues of tokens, but only protects modern browsers

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



19/30

XSS vs CSRF

Both XSS and CSRF bypass the protection offered by SOP. Notice that:

if a web application is vulnerable against XSS, none of the proposed
defences against CSRF is effective. This means that XSS is a more
serious security concern than CSRF in most cases

in some cases, CSRF can be just as dangerous as XSS. For example,
CSRF can sometimes lead to account takeover. Can you think about
real-world examples where this might happen?

Bottom line: do not take any of these two vulnerabilities lightly!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



20/30

Cross Site Script Inclusion (XSSI)

A less known attack abusing cross-site requests is called Cross Site Script
Inclusion or XSSI for short [3].

XSSI in Practice

1 The victim authenticates at good.com and later visits evil.com

2 The page at evil.com loads a script from good.com

3 Since the script inclusion request contains the victim’s cookies, the
script might be dynamically generated to include private information

4 The page at evil.com uses JS to exfiltrate the secret from the script

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



21/30

Scoping in JavaScript

JavaScript variables live in the global scope by default

... even when declared within a function!

you can make variables local to a function by using the var keyword

var globalVariable1 = 5; // A global variable

function globalFunction() {

var localVariable = 2; // A local variable

globalVariable2 = 3; // Another global variable

window.globalVariable3 = 4; // Yet another global

}

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



22/30

Scoping in JavaScript

While C++ or Java make use of block scoping, JavaScript utilizes the
so-called function scoping:

the JS engine creates a new scope for each encountered function

an identifier that is locally defined within a function is associated
with the function scope, irrespective of blocks

you can enforce block scoping by using the let keyword

Advice: there is nothing using var that let can’t do better...

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



23/30

Scoping in JavaScript

What’s the output of the following piece of code?

var age = 100;

if (age > 12) {

var dogYears = age * 7;

console.log(’You are ${dogYears} dog years old!’);

}

console.log(’Value of dogYears: ${dogYears}’);

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



24/30

Stealing Secrets via XSSI: Part 1

How do we attack here?

// snippet of the file https://good.com/js/pay.js

function doPayment() {

info = {ccn: "verysecret"};

// payment logic implementation

}

Exploit

<script src="https://good.com/js/pay.js"/>

leak(info);

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



24/30

Stealing Secrets via XSSI: Part 1

How do we attack here?

// snippet of the file https://good.com/js/pay.js

function doPayment() {

info = {ccn: "verysecret"};

// payment logic implementation

}

Exploit

<script src="https://good.com/js/pay.js"/>

leak(info);

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



25/30

Stealing Secrets via XSSI: Part 2

How do we attack here?

// snippet of the file https://good.com/js/pay.js

function doPayment() {

var info = {ccn: "verysecret"};

// payment logic implementation

return JSON.stringify(info);

}

Exploit

JSON.stringify = function(x) { leak(x); }

<script src="https://good.com/js/pay.js"/>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



25/30

Stealing Secrets via XSSI: Part 2

How do we attack here?

// snippet of the file https://good.com/js/pay.js

function doPayment() {

var info = {ccn: "verysecret"};

// payment logic implementation

return JSON.stringify(info);

}

Exploit

JSON.stringify = function(x) { leak(x); }

<script src="https://good.com/js/pay.js"/>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



26/30

Inheritance in JavaScript

Inheritance in JavaScript is not based on classes, but directly on objects
known as prototypes.

var o1 = {a: 1}; // prototype is Object.prototype

var o2 = Object.create(o1); // prototype is o1

console.log(o2.a); // prints 1

Method invocations traverse the prototype chain looking for a valid
implementation, up to the root Object.prototype.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



27/30

Stealing Secrets via XSSI: Part 3

How do we attack here?

// snippet of the file https://good.com/js/pay.js

function doPayment() {

var data = ["ccn1","ccn2","ccn3"];

var x = data.slice(1);

// payment logic implementation

}

Exploit

Array.prototype.slice = function(x) { leak(this); }

<script src="https://good.com/js/pay.js"/>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



27/30

Stealing Secrets via XSSI: Part 3

How do we attack here?

// snippet of the file https://good.com/js/pay.js

function doPayment() {

var data = ["ccn1","ccn2","ccn3"];

var x = data.slice(1);

// payment logic implementation

}

Exploit

Array.prototype.slice = function(x) { leak(this); }

<script src="https://good.com/js/pay.js"/>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



28/30

Preventing XSSI

XSSI is different from CSRF, yet the attack vector is the same:

any of the proposed defences against CSRF is useful against XSSI

however, XSSI makes the attack surface on web apps even larger!

XSSI can also be prevented by defensive programming

function doPayment() {

var info = {ccn: "verysecret"};

var myserialize = function(x) { ... };

return myserialize(info);

}

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



29/30

Preventing XSSI

A better, general solution leverages SOP:

1 script code is never generated on the fly based on session cookies,
but always pulled from a static file

2 sensitive and dynamic data values are kept in a separate file, which
cannot be interpreted by the browser as JavaScript

3 when the static JavaScript gets executed, it sends an XHR to the
file containing the secret data

4 use CORS to selectively grant read access to third parties

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI



30/30

References

Adam Barth, Collin Jackson, and John C. Mitchell.
Robust defenses for cross-site request forgery.
In ACM CCS, pages 75–88, 2008.

Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti,
and Gabriele Tolomei.
Mitch: A machine learning approach to the black-box detection of
CSRF vulnerabilities.
In IEEE EuroS&P, pages 528–543, 2019.

Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns.
The unexpected dangers of dynamic javascript.
In USENIX Security Symposium, pages 723–735, 2015.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - CSRF & XSSI


