
1/29

Security II - Same Origin Policy

Stefano Calzavara

Università Ca’ Foscari Venezia

February 13, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

2/29

Same Origin Policy (SOP)

The Same Origin Policy (SOP) is the baseline defence mechanism of web
browsers, which isolates data controlled by good.com from read / write
attempts by evil.com.

Key Questions

1 What is an isolation domain for SOP?

2 What should be isolated by SOP?

3 What are the limitations of SOP?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

3/29

Web Origins

SOP defines isolation domains in terms of origins.

Origin

An origin is a triple including a scheme, a hostname and a port. When
the port is omitted, the default port of the scheme is implicitly assumed.

Example

Consider http://www.flicker.com/galleries, then:

http://www.flicker.com/favorites has the same origin

http://www.flicker.com:80/galleries has the same origin

https://www.flicker.com/galleries has different origin

http://my.flicker.com/galleries has different origin

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

4/29

SOP Restrictions

At a high level, SOP can be summarized as follows: data owned by origin
o1 must be isolated from read/write attempts by any origin o2 6= o1.

Example

A script running on a page served by http://www.foo.com cannot:

access cookies of https://www.bar.com

access the DOM of https://www.bar.com

access the DOM of https://www.foo.com

No formal definition!

It is just too complicated to specify all places where SOP must apply, so
different browsers often implement SOP differently!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

5/29

Cookies and SOP

Cookies implement a relaxed variant of SOP:

3 cookies set by good.com cannot be accessed by evil.com

3 evil.com is not allowed to set cookies for good.com

7 cookies do not provide isolation by scheme and port

7 cookies can be shared across sibling domains (different origins)

7 cookies do not provide integrity for sibling domains and their children

The question whether SOP applies to cookies is essentially philosophical!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

6/29

Web Storage and SOP

Web storage is a simple JS API to store origin-scoped data, introduced in
HTML 5. It proposes the traditional key-value view of cookies.

Example

localStorage.setItem("lang", "IT");

v = localStorage.getItem("lang");

Web storage is one of the simplest examples where SOP strictly applies:
read / write accesses to web storage are separated per origin.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

7/29

Cookies vs Web Storage

Wait a minute! Why can’t we use web storage for session management?

Cookies Web Storage
Relaxed SOP Traditional SOP
Sent automatically Sent on demand
HttpOnly = shielded from JS Always accessible to JS
Sessions are easy to implement Sessions require JS logic

Both mechanisms have pros and cons, but the simplicity of cookies is
preferred by most web developers.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

8/29

Cookies + WebStorage = Better Sessions

Combine cookies and web storage to get the best of two worlds [1]:

1 set an HttpOnly cookie c = s, where s is a session identifier

2 set an entry k = h(s) in the web storage, where h is a hash function

3 require authenticated requests to include a parameter p, populated
by reading the value of k from the web storage

4 authenticate only the requests attaching both a cookie c = s and a
parameter p = h(s)

Bonus: mark c as Secure on HTTPS applications.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

9/29

Cookies + WebStorage = Better Sessions

The proposed scheme has many advantages:

the use of security attributes ensures cookie confidentiality and the
cookie value cannot be reconstructed from its hash, hence session
hijacking is not possible

since requests are not authenticated by cookies alone, CSRF is also
prevented by construction

although cookies provide weak integrity guarantees against network
attackers, this is compensated by the use of the web storage

The scheme still requires the implementation of custom JS logic.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

10/29

Content Inclusion

Since the Web is designed to be interconnected, SOP puts very little
restrictions on content inclusion. For example, foo.com can normally
load images and stylesheets from bar.com.

Script Inclusion

If https://foo.com loads a script from https://bar.com using a
<script> tag, the script will run in the origin https://foo.com and
acquire its rights for SOP. Beware of remote script inclusion!

Example

Assume the attacker was able to take control of the jquery.com domain.
What could go wrong? How would you safeguard against this threat?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

11/29

Protecting Content Inclusion: Sub-Resource Integrity

It is possible to enforce integrity checks on included content by using the
recently introduced Sub-Resource Integrity mechanism.

<script src="https://code.jquery.com/jquery-3.4.1.min.js"

integrity="sha384-+/M6kredJcxdsqkczBUjML...">

Browsers fetching the resource compare the hash in the integrity tag
with the hash computed from the resource: if the hashes do not match,
the resource is discarded.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

12/29

Protecting Content Inclusion: Mixed Content

The Mixed Content policy implements restrictions on the inclusion of
HTTP resources in HTTPS pages:

passive content like images, audios and videos might be allowed at
the discretion of browser vendors

everything which does not fall in this list of exceptions is considered
active content and must be blocked

All modern browsers implement the Mixed Content policy in some form,
which puts a light flavour of SOP into content inclusion.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

13/29

XMLHttpRequest (XHR)

XMLHttpRequest is a powerful JS API used to send HTTP requests and
process the corresponding HTTP responses.

Example

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

user = JSON.parse (xhttp.responseText);

}

};

xhttp.open("GET", "https://bar.com/users.php?uid=123");

xhttp.send();

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

14/29

XHR and SOP: Request Methods

XHR can be used to send HTTP requests with different methods:

no restriction on GET, POST and HEAD requests: such requests
can be sent to any origin

GET and HEAD are safe and idempotent, while cross-origin POST
requests are already allowed by form submissions

all the other methods, including PUT and DELETE, are restricted to
same-origin requests for security reasons

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

15/29

XHR and SOP: Request Headers

XHR also allows the attachment of custom HTTP headers to requests.

Example

var xhttp = new XMLHttpRequest();

xhttp.open("GET", "https://bar.com/users.php?uid=123");

xhttp.setRequestHeader("X-Test-Header", "HighSecurity");

xhttp.send();

However, SOP restricts this practice to same-origin requests. The reason
is that custom headers might have arbitrarily complex semantics, which is
specific to individual web applications.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

16/29

XHR and SOP: Cross-Origin Reads

Though SOP does not prevent a cross-origin XHR request, it restricts
access to the corresponding HTTP response for security reasons.

Example

If this was not the case, an attacker at https://www.evil.com could
try to get read access to the victim’s mailbox by sending (authenticated)
XHR requests to https://mail.google.com.

Alert!

Preventing cross-origin read accesses is a major restriction!

1 Legacy solution: JSON with Padding (JSONP)

2 Modern solution: Cross Origin Resource Sharing (CORS)

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

17/29

JSON with Padding (JSONP)

Assume foo.com wants to access a user database at bar.com

1 foo.com implements a callback to process the upcoming response,
say a parseUser function taking a single JSON parameter

2 foo.com loads a script from the following URL:
https://bar.com/users.php?uid=123&cb=parseUser

3 bar.com responds with the following script:
parseUser({"name": "Bob", "sex": "M", "ID": "123"})

4 the callback is invoked with the right content at foo.com

This “fancy” pattern is known as JSON with Padding (JSONP).

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

18/29

Insecurity of JSONP

JSONP is obviously insecure for at least two reasons:

1 script injection: the caller must place a lot of trust in the callee, who
might ignore the callback and reply with an arbitrary script

2 information leakage: the callee must implement protection against
CSRF, unless the content of the response is public data

Luckily, there is no reason to use JSONP on the modern Web!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

19/29

Cross Origin Resource Sharing (CORS)

CORS provides a disciplined way to relax the restrictions of SOP.

Intuition

The key idea of CORS can be summarized as follows:

1 foo.com asks for permission to read cross-origin data

2 bar.com grants or denies the requested permission

3 the browser enforces the final choice of bar.com

However, the details are a bit tricky...

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

20/29

CORS: Simple Requests

A simple request is essentially a GET, POST or HEAD request without
custom HTTP headers attached.

Relevant CORS Headers

Origin: request header containing the origin which is asking for
cross-origin read permission

Access-Control-Allow-Origin: response header containing the
origin to which such permission is granted (* for any origin)

Access is granted iff the content of the Access-Control-Allow-Origin

header matches the content of the Origin header.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

21/29

CORS: Simple Requests

foo.com Browser bar.com

GET /page.php

HTML page

GET /users.php&uid=123

Origin: https://foo.com

ACAO: https://foo.com
JSON response

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

22/29

CORS: Non-Simple Requests

HTTP requests which are not simple use a more complicated protocol,
involving a preliminary approval based on a preflight request.

Relevant CORS Headers

Access-Control-Request-Method: preflight request header
containing the method of the non-simple request

Access-Control-Request-Headers: preflight request header
containing the list of the custom headers of the non-simple request

Access-Control-Allow-Methods: preflight response header
containing a list of allowed methods

Access-Control-Allow-Headers: preflight response header
containing a list of allowed custom headers

Access-Control-Max-Age: preflight response header for caching

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

23/29

CORS: Non-Simple Requests

foo.com Browser bar.com

GET /page.php

HTML page
OPTIONS /users/123

Origin: https://foo.com
ACRM: DELETE

ACAO: https://foo.com
ACAM: DELETE

DELETE /users/123

Success!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

24/29

CORS: Why Preflight?

Non-simple requests are delicate from a security perspective:

methods like PUT and DELETE are intended to have a significant,
sensitive side-effect at the server (unsafe methods)

custom headers can have an arbitrarily complex semantics for web
applications, hence pose a potential security threat

SOP normally prevents this form of cross-origin requests. The preflight
requests in CORS allow a relaxation without breaking the Web.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

25/29

CORS: Credentialed Requests

Browsers do not attach credentials (cookies) to cross-origin XHRs, unless
the withCredentials property of the XHR object is activated.

Example

var xhttp = new XMLHttpRequest();

xhttp.open("GET", "https://bar.com/users.php?uid=123");

xhttp.withCredentials = true;

xhttp.send();

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

26/29

CORS: Credentialed Requests

Credentialed requests must be explicitly allowed by the callee: this is very
useful to prevent information leaks.

Simple Requests

If the response has no Access-Control-Allow-Credentials: true

header, the response body is left inaccessible.

Non-Simple Requests

If the preflight response has no Access-Control-Allow-Credentials:

true header, the non-simple request is not even sent.

When responding to a credentialed request, the server cannot use the
wildcard * in the Access-Control-Allow-Origin header!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

27/29

Security of CORS

CORS is a standardized, more secure alternative to JSONP:

1 no script injection: though the callee can still respond with arbitrary
content, the caller can process the response before using it

2 no information leakage: only credentialed requests might disclose
confidential information and the callee has control over them

This is a huge improvement over JSONP, but please note one can still
write insecure applications!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

28/29

SOP Pitfalls: DNS Rebinding

The security of SOP relies on the security of DNS. If the DNS cannot be
trusted, then SOP can be bypassed. A well-known attack against SOP is
called DNS rebinding [2]:

1 the attacker registers evil.com and gets access to its DNS records

2 once the victim accesses evil.com, the attacker provides a DNS
record with a short TTL pointing to the attacker’s server

3 the attacker delivers a malicious script, which waits until the TTL
has expired and sends a request to evil.com/password.txt

4 since the TTL has expired, the attacker now provides a different
DNS record pointing to a target server on the victim’s intranet

5 since the browser sees a same-origin response, the malicious script
can read the password file and leak it to the attacker!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

29/29

References

Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.
Dr cookie and mr token - web session implementations and how to
live with them.
In Proceedings of the Second Italian Conference on Cyber Security,
Milan, Italy, February 6th - to - 9th, 2018, 2018.

Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao, and Dan
Boneh.
Protecting browsers from dns rebinding attacks.
In Proceedings of the 2007 ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007, pages 421–431, 2007.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Same Origin Policy

