
1/29

Security II - Frames

Stefano Calzavara

Università Ca’ Foscari Venezia

March 9, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



2/29

Frames

A frame is a part of a web page which renders content independently of
its container. Typically used for:

advertisement: content served by an advertisement network is placed
in a separate area to generate revenue

authentication: login form of a single sign-on provider is placed in a
separate area, which looks the same on all including sites

gadgets: “like” buttons and such

Frames are quite interesting from a security perspective!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



3/29

Frames and SOP

good.com

ads.com

The parent frame and its children keep
living in their own origins:

if a page at origin o1 opens a frame
towards a page at origin o2, the two
pages can access the DOM of each
other only when o1 = o2

this way, good.com can load ads from
ads.com without exposing cookies and
other secrets

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



4/29

Frames and SOP

SOP does not constrain framing in anyway: normally, every page on the
Web can open frames towards any other page on the Web.

Alert!

The operators of good.com might want to forbid framing content from
evil.com: they can do this by using the frame-src directive of CSP.

Alert!

The operators of good.com might want to forbid being framed from
evil.com: we will discuss this later in the lecture.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



5/29

Opening Frames

It is possible to load a frame by using the <iframe> tag, setting its src

attribute to the page hosting the desired content.

<iframe src="https://foo.com" height="200" width="300"/>

The parent and the child can then get a reference to each other:

the parent stores the opened frames in the window.frames array

the child stores its opener in the window.parent variable

This is useful to implement frame communication between the parent
and the child.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



6/29

Frame Communication

Frames on the same origin can communicate by reading and writing over
their DOMs, since SOP does not isolate them.

child = window.frames[0];

secret = child.document.getElementById("secret");

got_secret = 1;

got_secret = 0;

while (got_secret != 1) {

parent = window.parent;

got_secret = parent.document.got_secret;

sleep(1000);

}

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



7/29

Domain Relaxation

Two pages on domains sharing a sufficiently long common suffix1 can
relax their document.domain property to get the same origin and enable
frame communication.

p1 at https://www.foo.com and p2 at https://mail.foo.com:

1 p1 loads p2 inside a frame

2 p1 sets document.domain to foo.com

3 p2 sets document.domain to foo.com

4 p1 and p2 now have the same origin and can communicate

Step 2 would be required even if p1 was already sitting at foo.com!

1https://publicsuffix.org/

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames

https://publicsuffix.org/


8/29

Domain Relaxation

Domain relaxation might be useful to play around SOP, but might
introduce security risks:

1 assume that www.foo.com implements domain relaxation, e.g.,
because it wants to communicate with mail.foo.com

2 the attacker finds an XSS vulnerability at vuln.foo.com

3 the attacker exploits the XSS to open a frame to www.foo.com

4 the XSS then sets document.domain to foo.com

Now the XSS at vuln.foo.com escalated to www.foo.com, since the
attacker can access the DOM of the latter.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



9/29

postMessage

Frame communication between different origins is better implemented by
means of the postMessage API.

Message sending can be performed using:

targetWindow.postMessage(message, targetOrigin)

with:

targetWindow: a reference to the receiver, e.g, parent or child

message: any serializable data to be sent

targetOrigin: the origin of the intended recipient (can be "*")

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



10/29

postMessage

Message reception is handled by setting a listener as follows:

window.addEventListener("message", receiveMessage);

where receiveMessage is a callback waiting for an event object with the
following properties:

data: the deserialized received data

origin: the origin of the sender (when postMessage was called!)

source: a reference to the sender, e.g., parent or child

Notice that the origin of source might be different from origin!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



11/29

postMessage: Security Considerations

postMessage is better than domain relaxation for frame communication,
because it is more general and exchanges serialized data without granting
scripting access to the frame.

However, please recall the following [2]:

if you are sending confidential data, always specify the origin of the
intended recipient in the postMessage invocation

if you are willing to receive data, check the origin of the sender
whenever possible and always sanitize the content of the message

if you want to communicate back to the original sender, do not
blindly trust the reference to its window and specify its origin

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



12/29

postMessage: Example

Sender:

rcv = window.frames[0];

msg = document.cookie;

rcv.postMessage(msg, "https://www.trusted.com");

Receiver:

window.addEventListener("message", getCookie);

function getCookie(ev) {

if (ev.origin != "https://www.example.com")

return;

msg = sanitize(ev.data);

ack = "Got cookie: " + msg;

ev.source.postMessage(ack, "https://www.example.com");

}

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



13/29

Frame Sandboxing

It is possible to restrict the privileges of frames by setting the sandbox

attribute to the empty string. The most important restrictions are:

1 the content of the frame is treated as being from a unique origin

2 form submission is blocked

3 all forms of script execution are blocked

4 plugin execution is blocked

5 popup creation is blocked

6 top-level navigation via window.top.location is blocked

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



14/29

Frame Sandboxing

It is possible to relax individual security restrictions by setting a list of
special keywords in the sandbox attribute.

Default restriction Relaxed with
enforce unique origin allow-same-origin

form submission is blocked allow-forms

script execution is blocked allow-scripts

popup creation is blocked allow-popups

top-level navigation is blocked allow-top-navigation

The sandboxing flags applied to a frame also apply to any windows or
frames created in the sandbox.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



15/29

Frame Sandboxing: Example

The following snippet of code shows how to embed a “posting” widget
from Twitter while enforcing least privilege:

<iframe src="https://platform.twitter.com/tweet_button.html"

sandbox="allow-same-origin allow-scripts

allow-popups allow-forms"/>

allow-scripts: required to let JS deal with user interaction

allow-popups: required as the button pops up a tweeting form

allow-forms: required to submit the tweet

allow-same-origin: required to support login to Twitter

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



16/29

Frame Sandboxing and Privilege Separation

Frame sandboxing is great not just to safely load content from untrusted
web origins, but also to enforce privilege separation in web apps

1 break your application up into logical pieces

2 sandbox each piece with the minimal privilege possible

3 use postMessage to let pieces communicate

Demo: Evalbox from HTML5 Rocks.

Alert!

When framing same-origin content, be aware that the combination of
allow-same-origin and allow-scripts might lead to the removal of
the sandbox attribute!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames

https://www.html5rocks.com/static/demos/evalbox/index.html


17/29

Clickjacking

Clickjacking is a UI-based attack in which a user is tricked into clicking
on actionable content on a target website by clicking on some other
content in a decoy website.

The attack uses the opacity and
z-index attributes of CSS to place
an invisible frame pointing to the
target website on top of content of
the decoy website.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



18/29

Framebusting

Back in the days, websites used to rely on Javascript-based framebusting
techniques to defend against clickjacking.

<script type="text/javascript">

if (top != self)

top.location = self.location;

</script>

Unfortunately, framebusting is only deceptively simple, even more so in
modern browsers... for example, setting sandbox="allow-forms" is a
great way to disable framebusting!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



19/29

X-Frame-Options

A better solution against clickjacking is based on the X-Frame-Options

header (XFO for short). It can take three possible values:

DENY: page framing is denied

SAMEORIGIN: page framing is only allowed on the same origin

ALLOW-FROM u: page framing is only allowed at u

Note that ALLOW-FROM is not supported by Chrome and derivates! It has
also been recently removed from Firefox, hence it is better avoided.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



20/29

Problems with XFO

Limited Expressiveness

XFO does not allow to express useful policies like:

framing is allowed on any origin from a whitelist

framing is allowed on any subdomain of a given site

Incomplete Specification

Since XFO was implemented in browsers before being standardized,
different browsers might give different interpretations of the same header.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



21/29

Double Framing

The XFO specification does not mandate whether origin checks have to
be performed on the top-level browsing context or on the full chain of
ancestors, hence some browsers are subject to double framing attacks.

good.com

evil.com

good.com

An attacker who exploits a markup injection
at good.com can perform clickjacking by
abusing nested frames, unless the browser
checks the full chain of frame ancestors.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



22/29

CSP frame-ancestors

The frame-ancestors directive introduced in CSP Level 2 is the best
protection mechanism against clickjacking on modern browsers

it leverages the full expressive power of the source expressions of CSP

it solves the issue of double framing, since all ancestors are checked

What about users of legacy browsers?

it is possible to send both CSP and XFO: the former is enforced by
modern browsers, the latter is enforced by legacy browsers

wait a minute, XFO is less expressive than CSP...

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



23/29

CSP vs XFO: Consistency

Recent research studied the problem of combining CSP and XFO [1].

Definition

A policy p is consistent for the set of browsers B if and only if it enforces
the same security restrictions on all b ∈ B.

Example

CSP: frame-ancestors ’self’

XFO: SAMEORIGIN

Unfortunately, coming up with consistent policies is not always so easy...

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



24/29

CSP vs XFO: Relaxed Consistency

Definition

A policy p is security-oriented if and only if:

1 p is consistent for the set of legacy browsers Bl

2 p is consistent for the set of modern browsers Bm

3 for all bl ∈ Bl and bm ∈ Bm, the security restrictions on bl are no
weaker than the security restrictions on bm

Example (at https://www.example.com)

CSP: frame-ancestors https://*.example.com

XFO: SAMEORIGIN

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



25/29

CSP vs XFO: Relaxed Consistency

Definition

A policy p is compatibility-oriented if and only if:

1 p is consistent for the set of legacy browsers Bl

2 p is consistent for the set of modern browsers Bm

3 for all bl ∈ Bl and bm ∈ Bm, the security restrictions on bm are no
weaker than the security restrictions on bl

Example

CSP: frame-ancestors ’none’

XFO: SAMEORIGIN

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



26/29

CSP vs XFO: Summary

It is important to use both CSP and XFO, yet their combination is hard:

consistency is the desired property, yet hard to achieve in practice

inconsistent policies which are just either security-oriented or
compatibility-oriented might be acceptable in practice

most of the other inconsistent policies are bad!

A recent paper [1] estimated that 10% of the existing framing control
policies are inconsistent and most of them can be completely bypassed in
at least one browser!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



27/29

CSP vs XFO: Examples

Which consistency properties are satisfied by the following policies?

XFO: ALLOW-FROM https://www.foo.com

XFO: ALLOW-FROM https://www.foo.com

CSP: frame-ancestors https://www.foo.com

XFO: DENY

CSP: frame-ancestors https://www.foo.com

XFO: SAMEORIGIN, DENY

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



27/29

CSP vs XFO: Examples

Which consistency properties are satisfied by the following policies?

XFO: ALLOW-FROM https://www.foo.com

XFO: ALLOW-FROM https://www.foo.com

CSP: frame-ancestors https://www.foo.com

XFO: DENY

CSP: frame-ancestors https://www.foo.com

XFO: SAMEORIGIN, DENY

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



27/29

CSP vs XFO: Examples

Which consistency properties are satisfied by the following policies?

XFO: ALLOW-FROM https://www.foo.com

XFO: ALLOW-FROM https://www.foo.com

CSP: frame-ancestors https://www.foo.com

XFO: DENY

CSP: frame-ancestors https://www.foo.com

XFO: SAMEORIGIN, DENY

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



27/29

CSP vs XFO: Examples

Which consistency properties are satisfied by the following policies?

XFO: ALLOW-FROM https://www.foo.com

XFO: ALLOW-FROM https://www.foo.com

CSP: frame-ancestors https://www.foo.com

XFO: DENY

CSP: frame-ancestors https://www.foo.com

XFO: SAMEORIGIN, DENY

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



28/29

Web Tracking

A last interesting aspect of frames is related to privacy. In particular,
frames are a key component of web tracking:

1 u visits a.com, which loads in a frame a tracking script s from t.com

2 s sets a cookie c with a unique identifier: this is called a third-party
cookie, since s runs at t.com (who owns the cookie)

3 u visits b.com, which also loads s: since t.com receives both c and
the Referer header, it learns that the user who got c visited b.com

4 this practice allows tracking the navigation profile of u, though it
does not necessarily disclose her identity

Different browsers have different approaches to this form of tracking.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames



29/29

References

Stefano Calzavara, Sebastian Roth, Alvise Rabitti, Michael Backes,
and Ben Stock.
A tale of two headers: a formal analysis of inconsistent click-jacking
protection on the Web.
In USENIX Security. USENIX Association, 2020.

Sooel Son and Vitaly Shmatikov.
The postman always rings twice: Attacking and defending
postmessage in HTML5 websites.
In NDSS. The Internet Society, 2013.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Frames


