
1/27

Security II - More Server-Side Security

Stefano Calzavara

Università Ca’ Foscari Venezia

March 26, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

2/27

Introduction

In this lecture, we will focus on three classes of problems which affect the
server-side logic of the web application:

1 Server-Side Request Forgery: abuse the web server as a confused
deputy to make it take actions under the attacker’s control

2 XML External Entities: abuse some dangerous features of the XML
file format to trigger server-side actions under the attacker’s control

3 HTTP Parameter Pollution: confuse the web application on HTTP
parameter parsing to force unintended behavior

We will not discuss database security, since it was already covered in the
first module (Security I).

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

3/27

Server-Side Request Forgery

Server-side request forgery (SSRF) is a web security vulnerability that
allows an attacker to induce the server-side application to make HTTP
requests to an arbitrary host of the attacker’s choosing

this is dangerous, because it makes the server a confused deputy and
enables privilege escalation attacks

typical targets: the local host or other back-end servers sitting on
the same local network, protected by a firewall

we will discuss soon other threats coming from SSRF

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

4/27

Legitimate Uses of Server-Side Requests

Why do we need server-side requests in web applications?

Preview of resources: try sending a link over Slack

Caching / proxies: to preserve privacy of the end users

Data import: just search for something on Google Images

... and possibly more use cases!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

5/27

SSRF: Attacking the Local Host

Let’s assume a front-end server at www.foo.com gets stock information
requests and forwards them to a back-end server, which then provides the
result. The front-end accepts POST requests with parameter:

stockApi=http://stock.foo.com/prodId%3D6%26storeId%3D12

The attacker can forge a request with parameter:

stockApi=http://127.0.0.1/admin

Since the administration interface of the web app is locally accessible, the
attacker performs privilege escalation through the response!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

6/27

SSRF: Attacking Back-End Servers

A variant of the same attack can be used to target other machines sitting
on the same local network:

stockApi=http://192.168.0.68/admin

These machines are not visible from the Internet, but can be accessed by
the confused server who shares their local network.

This form of attack is getting a lot of traction in the recent years thanks
to the rise of IoT devices...

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

7/27

SSRF: Other Variants

SSRF can also be abused to:

Attack remote servers: the confused server is fooled into sending
malicious requests to other remote servers, so that the attack is not
coming from the attacker’s machine

Bypass SOP: the confused server is fooled into fetching malicious
content from the attacker’s server, so that the attacker gets script
capabilities in the server’s origin

A dangerous vulnerability, which should be readily fixed!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

8/27

Preventing SSRF: Black-Listing

Some applications block input containing hostnames like 127.0.0.1 and
localhost, or sensitive paths like /admin

the localhost ranges from 127.0.0.0 to 127.255.255.255

alternative IP representations exists, for example 127.1

the attacker can register a domain and make it resolve to 127.0.0.1

different encodings of URLs, e.g., double-encoding attacks

case variations and other quirks in URL parsing libraries [1]

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

9/27

Parsing URLs is Hard!

The full syntax of URLs is surprisingly complicated...

http://user:pass@192.168.0.1:80/path?foo=one&bar=two#frag

How shall we parse http://google.com#@evil.com?

Option 1: request to evil.com with user google.com#

Option 2: request to google.com with fragment @evil.com

Just one example, see [1] for other nasty details!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

10/27

Preventing SSRF: White-Listing

Some applications only allow input that matches, begins with, or
contains, a whitelist of permitted values

fake credentials: https://good.com@evil.com

fragment identifier: https://evil.com#good.com

subdomains: https://good.com.evil.com

again, quirks in URL parsing libraries

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

11/27

SSRF and Open Redirects

An open redirect vulnerability happens when a web application redirects
users to an attacker-controlled URL. Normally low severity, but quite
dangerous in the context of SSRF.

stockApi=http://stock.foo.com?path=127.0.0.1/admin

This attack bypasses filtering because:

the front-end sends a request to http://stock.foo.com, which is
allowed by the filter

the back-end redirects the front-end to 127.0.0.1

the response of the redirect is returned to the attacker

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

12/27

XML External Entities

XML external entities is a web security vulnerability arising from the
abuse of little known, dangerous features of the XML format.

<?xml version="1.0"?>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Buy milk</body>

</note>

XML is a markup language, which
makes use of tags much like HTML.
The validity of an XML file is
determined by its Document Type
Definition (DTD).

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

13/27

Example: DTD

<?xml version="1.0"?>

<!DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Buy milk</body>

</note>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

14/27

XML Entities

In XML, an entity is just a binding between a name and a value, defined
in the DTD.

<!ENTITY wife "Jani">

The name of an entity can be mapped to its corresponding value in the
XML document by using a special syntax, e.g., &wife;

An external entity binds a name to a URI.

<!ENTITY server SYSTEM "http://stock.foo.com">

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

15/27

XML Billion Laughs Attack

Thanks to colleague Ben Stock from CISPA for sharing this...

<?xml version="1.0"?>
<!DOCTYPE lolz [

<!ENTITY lol "lol">
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>
<lolz>&lol9;</lolz>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

16/27

XXE: Retrieving Files

Suppose a shopping application checks for the stock information of a
product by submitting the following XML to the server:

<?xml version="1.0" encoding="UTF-8"?>

<stockCheck><productId>381</productId></stockCheck>

Stealing the password file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [

<!ENTITY xxe SYSTEM "file:///etc/passwd">

]>

<stockCheck><productId>&xxe;</productId></stockCheck>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

17/27

XXE: Performing SSRF

Since an XML external entity can point to any URI, e.g., resolving to a
local IP address, it is possible to abuse XXE to perform SSRF.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [

<!ENTITY xxe SYSTEM "http://192.168.0.68/admin">

]>

<stockCheck><productId>&xxe;</productId></stockCheck>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

18/27

XXE via File Upload

Do not underestimate the amount of XML information which is still
exchanged nowadays!

Many common file formats are based on XML:

Document formats like DOCX

Image formats like SVG

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<svg height="60" width="200">

<text x="0" y="15" fill="red" transform="rotate(30 20,40)">

I totally hate SVG!

</text>

</svg>

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

19/27

Defending Against XXE

If you know the enemy and know yourself, you need not fear the result of
a hundred battles (Sun Tzu, The Art of War)

now that you know about the existence of XXE, check the details of
your XML parser!

many modern XML parsing libraries disable support for XXE, unless
you explicitly relax this security restriction

yet, libraries might be vulnerable to the billion laugh attack!

disallow DTD definitions in XML files and use a static, local DTD

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

20/27

HTTP Parameter Pollution

HTTP parameter pollution (HPP) is a vulnerability enabled by the HTTP
parameter parsing APIs of web programming languages.

x = $_GET[’user’]

What happens if the GET parameter contains two user parameters?

the first occurrence?

the last occurrence?

a list of occurrences?

The truth is... this varies a lot!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

21/27

Parameter Parsing in Web Frameworks

The Web is not a place for the weak-hearted...

Framework Semantics Example
ASP All occurrences (,) v1, v2

JSP First occurrence v1

perl First occurrence v1

PHP Last occurrence v2

Python List of occurrences [v1, v2]

Web server and application may differ in understanding of parameters!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

22/27

HPP: Example

Assume the university server hosts a PHP application which processes
POST requests, including parameters of the following form:

examId=12&finalMark=25&studentId=123456

How can you always pass the exams with the highest mark? Assume you
can manually input your studentId (443256) during signup.

Enjoy your free exams by signing up as: 443256&finalMark=30.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

22/27

HPP: Example

Assume the university server hosts a PHP application which processes
POST requests, including parameters of the following form:

examId=12&finalMark=25&studentId=123456

How can you always pass the exams with the highest mark? Assume you
can manually input your studentId (443256) during signup.

Enjoy your free exams by signing up as: 443256&finalMark=30.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

23/27

HPP: Example

Infamous example at Blogger...

POST /add-authors HTTP/1.1

security_token=attackertoken&

blogID=attackerblogidvalue&

blogID=victimblogidvalue&

authorsList=attacker%40gmail.com&

ok=Invite

Permission check on the first occurrence of blogID, but target blog
extracted from the second occurrence of blogID.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

24/27

Defending Against HPP

HPP is relatively easy to defend against... once you know it exists!

check the documentation of your web development framework

if the API gives you back a list of parameters, you have all the
information you need

otherwise, parse the parameters manually and check that none
occurs multiple times

encode the & characters to avoid the discussed attack

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

25/27

Cookie Shadowing

A variant of HPP in the context of cookies is called cookie shadowing [2]

cookies have a scope, depending on the combination of the Domain,
Secure and Path attributes

it is possible for two cookies to have the same name, but different
scope, e.g., a host-only cookie and a domain cookie both called sid ,
which are both received by the server

the attacker can exploit this to force the server into preferring an
attacker-created cookie over a legitimate cookie with the same name

subtle problem: this depends on both the client and the server!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

26/27

Example: Cookie Shadowing

Credit card stealing against China UnionPay [2]

single session cookie uc s key

possibility to associate a credit card number to an existing account
to simplify future payment processes

the attacker can shadow the victim’s cookie with his own cookie to
make China UnionPay get the association wrong, i.e., associate the
victim’s credit card to the attacker’s account

no visual indicator of the account identity at the association interface

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

27/27

References

Orange Tsai.
A new era of ssrf - exploiting url parser in trending programming
languages!
Black Hat 2017.

Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Hai-Xin Duan, Shuo Chen,
Tao Wan, and Nicholas Weaver.
Cookies lack integrity: Real-world implications.
In 24th USENIX Security Symposium, pages 707–721. USENIX
Association, 2015.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - More Server-Side Security

