Security Il - More Server-Side Security

Stefano Calzavara

Universita Ca’ Foscari Venezia

March 26, 2020

Universita
Ca'Foscari
Venezia

Stefano Calzavara

Security Il - More Server-Side Security

Introduction

In this lecture, we will focus on three classes of problems which affect the
server-side logic of the web application:

Server-Side Request Forgery: abuse the web server as a confused
deputy to make it take actions under the attacker's control

XML External Entities: abuse some dangerous features of the XML
file format to trigger server-side actions under the attacker's control

HTTP Parameter Pollution: confuse the web application on HTTP
parameter parsing to force unintended behavior

We will not discuss database security, since it was already covered in the
first module (Security |).

Stefano Calzavara

Security Il - More Server-Side Security

Server-Side Request Forgery

Server-side request forgery (SSRF) is a web security vulnerability that
allows an attacker to induce the server-side application to make HTTP
requests to an arbitrary host of the attacker’s choosing

m this is dangerous, because it makes the server a confused deputy and
enables privilege escalation attacks

m typical targets: the local host or other back-end servers sitting on
the same local network, protected by a firewall

m we will discuss soon other threats coming from SSRF

Stefano Calzavara

Security Il - More Server-Side Security

Legitimate Uses of Server-Side Requests

Why do we need server-side requests in web applications?
m Preview of resources: try sending a link over Slack
m Caching / proxies: to preserve privacy of the end users
m Data import: just search for something on Google Images

. and possibly more use cases!

Stefano Calzavara

Security Il - More Server-Side Security

-
SSRF: Attacking the Local Host

Let’s assume a front-end server at www.foo.com gets stock information
requests and forwards them to a back-end server, which then provides the
result. The front-end accepts POST requests with parameter:

stockApi=http://stock.foo.com/prodIldi,3D6%26storeld%3D12

The attacker can forge a request with parameter:

stockApi=http://127.0.0.1/admin

Since the administration interface of the web app is locally accessible, the
attacker performs privilege escalation through the response!

Stefano Calzavara

Security Il - More Server-Side Security

E———
SSRF: Attacking Back-End Servers

A variant of the same attack can be used to target other machines sitting
on the same local network:

stockApi=http://192.168.0.68/admin

These machines are not visible from the Internet, but can be accessed by
the confused server who shares their local network.

This form of attack is getting a lot of traction in the recent years thanks
to the rise of loT devices...

Stefano Calzavara

Security Il - More Server-Side Security

e
SSRF: Other Variants

SSRF can also be abused to:

m Attack remote servers: the confused server is fooled into sending
malicious requests to other remote servers, so that the attack is not
coming from the attacker's machine

m Bypass SOP: the confused server is fooled into fetching malicious
content from the attacker's server, so that the attacker gets script
capabilities in the server's origin

A dangerous vulnerability, which should be readily fixed!

Stefano Calzavara

Security Il - More Server-Side Security

E———
Preventing SSRF: Black-Listing

Some applications block input containing hostnames like 127.0.0.1 and

localhost, or sensitive paths like /admin
m the localhost ranges from 127.0.0.0 to 127.255.255.255
m alternative IP representations exists, for example 127.1
m the attacker can register a domain and make it resolve to 127.0.0.1
m different encodings of URLs, e.g., double-encoding attacks
[

case variations and other quirks in URL parsing libraries [1]

Stefano Calzavara

Security Il - More Server-Side Security

-
Parsing URLs is Hard!

The full syntax of URLs is surprisingly complicated...

http://user:pass0192.168.0.1:80/path?foo=one&bar=two#frag

How shall we parse http://google.com#@evil.com?
m Option 1: request to evil.com with user google. com#
m Option 2: request to google.com with fragment @evil.com

Just one example, see [1] for other nasty details!

Stefano Calzavara

Security Il - More Server-Side Security

E———
Preventing SSRF: White-Listing

Some applications only allow input that matches, begins with, or
contains, a whitelist of permitted values

m fake credentials: https://good.com@evil.com
m fragment identifier: https://evil.com#good. com
m subdomains: https://good.com.evil.com

m again, quirks in URL parsing libraries

Stefano Calzavara

Security Il - More Server-Side Security

N
SSRF and Open Redirects

An open redirect vulnerability happens when a web application redirects
users to an attacker-controlled URL. Normally low severity, but quite
dangerous in the context of SSRF.

stockApi=http://stock.foo.com?path=127.0.0.1/admin

This attack bypasses filtering because:

m the front-end sends a request to http://stock.foo.com, which is
allowed by the filter

m the back-end redirects the front-end to 127.0.0.1
m the response of the redirect is returned to the attacker

Stefano Calzavara

Security Il - More Server-Side Security

XML External Entities

XML external entities is a web security vulnerability arising from the
abuse of little known, dangerous features of the XML format.

<?xml version="1.0"7>

<note> XMkL is a m?rkup Iangl;]a;gi, V|\f|h|l'(|:\t/]||_
<to>Tove</to> makes use of tags much like :
. The validity of an XML file is
<from>Jani</from> q ined by its D T
<heading>Reminder</heading> Detfgrrn_lne DYI'BS ocument Type
<body>Buy milk</body> efinition (DTD).
</note>

Stefano Calzavara

Security Il - More Server-Side Security

.
Example: DTD

<?xml version="1.0"7>

<IDOCTYPE note [
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

1>

<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Buy milk</body>

</note>

Stefano Calzavara

Security Il - More Server-Side Security

XML Entities

In XML, an entity is just a binding between a name and a value, defined
in the DTD.
<IENTITY wife "Jani">

The name of an entity can be mapped to its corresponding value in the
XML document by using a special syntax, e.g., &wife;

An external entity binds a name to a URL.

<!ENTITY server SYSTEM "http://stock.foo.com">

Stefano Calzavara

Security Il - More Server-Side Security

E———
XML Billion Laughs Attack

Thanks to colleague Ben Stock from CISPA for sharing this...

<?xml version="1.0"7>

<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ELEMENT lolz (#PCDATA)>
<!ENTITY loll "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&loll;&loll;&loll;&loll;&loll;&1lo1l1;&1011;&1011;&1011;&1011;">
<!ENTITY 1013 "&l012;&l012;&1012;&1012;&1012;&1012;&1012;&1012;&1012;&1012;">
<!ENTITY lol4 "&1013;&1013;&1013;&1013;&1013;&1013;&1013;&1013;&1013;&1013;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&1014;&1014;&1014;&1014;&1014;">
<!ENTITY lo0l6 "&lol5;&l015;&1015;&1015;&1015;&1015;&1015;&1015;&1015;&1015;">
<!ENTITY 1017 "&1l01l6;&1016;&1016;&1016;&1016;&1016;&1016;&1016;&1016;&1016;">
<!ENTITY 1018 "&1017;&1017;&1017;&1017;&1017;&1017;&1017;&1017;&1017;&1017;">
<!ENTITY 1019 "&1018;&1018;&1018;&1018;&1018;&1018;&1018;&1018;&1018;&1018;">

1>

<lolz>&l019;</lolz>

Stefano Calzavara

Security Il - More Server-Side Security

.
XXE: Retrieving Files

Suppose a shopping application checks for the stock information of a
product by submitting the following XML to the server:

<?xml version="1.0" encoding="UTF-8"7>
<stockCheck><productId>381</productId></stockCheck>

Stealing the password file:

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE foo [
<IENTITY xxe SYSTEM "file:///etc/passwd">
1>
<stockCheck><productId>&xxe;</productId></stockCheck>

Stefano Calzavara

Security Il - More Server-Side Security

E———
XXE: Performing SSRF

Since an XML external entity can point to any URI, e.g., resolving to a
local IP address, it is possible to abuse XXE to perform SSRF.

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE foo [
<!ENTITY xxe SYSTEM "http://192.168.0.68/admin">
1>
<stockCheck><productId>&xxe;</productId></stockCheck>

Stefano Calzavara

Security Il - More Server-Side Security

-
XXE via File Upload

Do not underestimate the amount of XML information which is still
exchanged nowadays!
Many common file formats are based on XML:

m Document formats like DOCX

m Image formats like SVG

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<svg height="60" width="200">
<text x="0" y="15" fill="red" transform="rotate(30 20,40)">
I totally hate SVG!
</text>
</svg>

Stefano Calzavara

Security Il - More Server-Side Security

Defending Against XXE

If you know the enemy and know yourself, you need not fear the result of
a hundred battles (Sun Tzu, The Art of War)
® now that you know about the existence of XXE, check the details of
your XML parser!
m many modern XML parsing libraries disable support for XXE, unless
you explicitly relax this security restriction
m yet, libraries might be vulnerable to the billion laugh attack!
m disallow DTD definitions in XML files and use a static, local DTD

Stefano Calzavara
Security Il - More Server-Side Security

HTTP Parameter Pollution

HTTP parameter pollution (HPP) is a vulnerability enabled by the HTTP
parameter parsing APls of web programming languages.

x = $_GET[’user’]

What happens if the GET parameter contains two user parameters?
m the first occurrence?
m the last occurrence?
m a list of occurrences?

The truth is... this varies a lot!

Stefano Calzavara
Security Il - More Server-Side Security

Parameter Parsing in Web Frameworks

The Web is not a place for the weak-hearted...

Framework | Semantics Example
ASP All occurrences (,) Vi, v2
JSP First occurrence Vi
perl First occurrence Vi
PHP Last occurrence Vs
Python List of occurrences | [vq, 2]

Web server and application may differ in understanding of parameters!

Stefano Calzavara

Security Il - More Server-Side Security

HPP: Example

Assume the university server hosts a PHP application which processes
POST requests, including parameters of the following form:

examId=12&finalMark=25&studentId=123456

How can you always pass the exams with the highest mark? Assume you
can manually input your studentId (443256) during signup.

Stefano Calzavara

Security Il - More Server-Side Security

HPP: Example

Assume the university server hosts a PHP application which processes
POST requests, including parameters of the following form:

examId=12&finalMark=25&studentId=123456

How can you always pass the exams with the highest mark? Assume you
can manually input your studentId (443256) during signup.

Enjoy your free exams by signing up as: 443256&finalMark=30.

Stefano Calzavara

Security Il - More Server-Side Security

HPP: Example

Infamous example at Blogger...

POST /add-authors HTTP/1.1

security_token=attackertoken&
blogID=attackerblogidvalue&
blogID=victimblogidvalue&
authorsList=attacker’40gmail.com&
ok=Invite

Permission check on the first occurrence of blogID, but target blog
extracted from the second occurrence of blogID.

Stefano Calzavara
Security Il - More Server-Side Security

Defending Against HPP

HPP is relatively easy to defend against... once you know it exists!
m check the documentation of your web development framework

m if the API gives you back a list of parameters, you have all the
information you need

m otherwise, parse the parameters manually and check that none
occurs multiple times

m encode the & characters to avoid the discussed attack

Stefano Calzavara

Security Il - More Server-Side Security

E———
Cookie Shadowing

A variant of HPP in the context of cookies is called cookie shadowing [2]

m cookies have a scope, depending on the combination of the Domain,
Secure and Path attributes

m it is possible for two cookies to have the same name, but different
scope, e.g., a host-only cookie and a domain cookie both called sid,
which are both received by the server

m the attacker can exploit this to force the server into preferring an
attacker-created cookie over a legitimate cookie with the same name

m subtle problem: this depends on both the client and the server!

Stefano Calzavara

Security Il - More Server-Side Security

Example: Cookie Shadowing

Credit card stealing against China UnionPay [2]
m single session cookie uc_s_key

m possibility to associate a credit card number to an existing account
to simplify future payment processes

m the attacker can shadow the victim’s cookie with his own cookie to
make China UnionPay get the association wrong, i.e., associate the
victim's credit card to the attacker’s account

m no visual indicator of the account identity at the association interface

Stefano Calzavara

Security Il - More Server-Side Security

References

El Orange Tsai.
A new era of ssrf - exploiting url parser in trending programming
languages!
Black Hat 2017.

@ Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Hai-Xin Duan, Shuo Chen,
Tao Wan, and Nicholas Weaver.
Cookies lack integrity: Real-world implications.
In 24th USENIX Security Symposium, pages 707-721. USENIX
Association, 2015.

Stefano Calzavara

Security Il - More Server-Side Security

