
1/28

Security II - Access Control Verification

Stefano Calzavara

Università Ca’ Foscari Venezia

April 2, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

2/28

Introduction

Along with authentication, authorization is the cornerstone of every
secure system

access control: grant or deny an access request performed by an
authenticated subject

what does it mean that an access control policy is secure?

how can we prove (or disprove) security?

We will formally investigate this on a popular access control model.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

3/28

Role-Based Access Control (RBAC)

The key idea of RBAC can be summarized as follows:

1 define a set of roles, i.e., collections of permissions

2 assign (sets of) roles to users, rather than individual permissions

3 access rights only depend on assigned roles, not on user identities

4 roles can be organized in a hierarchy: if r1 < r2, then r2 inherits all
the permissions of r1

RBAC is very popular, because it greatly simplifies the assignment and
revocation of permissions for large organizations.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

4/28

RBAC: Example

Permission to Role Assignment

We assign permissions to roles as follows:

Teacher: can create and grade assignments

Teaching Assistant: can grade assignments

Student: can submit solutions to assignments

User to Role Assignment

Stefano is a Teacher, all the other people are Students

Next year we will only need to revise the user-to-role assignment, which is
great... but who is authorized to change the role assignment?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

5/28

Administrative RBAC

ARBAC is the administrative extension of RBAC

key idea: use RBAC to handle role assignment and role revocation

a role r is said administrative if and only if it grants the ability to
assign or revoke some role

can-assign rules: express which roles can be assigned by owning r
and under which conditions

can-revoke rules: express which roles can be revoked by owning r
and under which conditions

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

6/28

ARBAC: Example

Let’s write down administrative rules in natural language:

1 a Teacher can revoke the role Student

2 a Teacher can revoke the role Teaching Assistant

3 a Teacher can assign the role Teaching Assistant to any user who is
not a Student (conflict of interest)

4 a Teacher can assign the role Student to any user who is not also a
Teacher (Teachers already spent enough time studying back then...)

Question Time!

Is this administrative policy secure or not?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

7/28

Security of ARBAC

Some important observations:

ARBAC is much harder to verify than RBAC, since it has a dynamic
nature coming from the introduction of administrative rules

there is no black-or-white notion of security for ARBAC: it really
boils down to our security goals

we need a way to formalize what are our security goals

we need a way to prove whether the security goals are met or not

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

8/28

Modeling ARBAC

The ARBAC standard has three components:

1 URA: user-role administration, which deals with the common task of
assigning and revoking roles to users

2 PRA: permission-role administration, which deals with the rare task
of granting and removing permissions to roles

3 RRA: role-role administration, which deals with the uncommon task
of changing the role hierarchy

We will focus just on the URA component of ARBAC, hence we do not
model permissions and the role hierarchy.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

9/28

ARBAC Semantics

We assume the existence of finite sets of roles R and users U

we let UR ⊆ U × R represent a user-to-role assignment

given a user u ∈ U, we let UR(u) = {r ∈ R | (u, r) ∈ UR}
we let P = (CA,CR) stand for a policy including a set of can-assign
rules CA and a set of can-revoke rules CR

State Transition System

Given an initial user-to-role assignment UR0, the policy P induces a set
of possible new user-to-role assignments UR i reachable from UR0 by
applying the administrative rules of P.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

10/28

ARBAC Semantics

Can-Assign Rules

We let CA ⊆ R × 2R × 2R × R, where each (ra,Rp,Rn, rt) ∈ CA has the
following meaning: users with administrative role ra can assign role rt to
any user who has all the roles in Rp and none of the roles in Rn.

Can-Revoke Rules

We let CR ⊆ R × R, where each (ra, rt) ∈ CR has the following meaning:
users with administrative role ra can revoke role rt from any user.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

11/28

ARBAC Semantics

Given a policy P = (CA,CR), the transitions UR i →P UR i+1 are defined
by the following two rules:

(ua, ra) ∈ UR (ra,Rp,Rn, rt) ∈ CA
Rp ⊆ UR(ut) Rn ∩ UR(ut) = ∅ rt 6∈ UR(ut)

UR →P UR ∪ {(ut , rt)}

(ua, ra) ∈ UR (ra, rt) ∈ CR rt ∈ UR(ut)

UR →P UR \ {(ut , rt)}

We omit the subscript P when it is irrelevant or clear from the context.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

12/28

Security of ARBAC: Example

Let’s translate the administrative rules in our framework:

1 a Teacher can revoke the role Student: (T ,S) ∈ CR

2 a Teacher can revoke the role Teaching Assistant: (T ,TA) ∈ CR

3 a Teacher can assign the role Teaching Assistant to any user who is
not a Student: (T , ∅, {S},TA) ∈ CA

4 a Teacher can assign the role Student to any user who is not also a
Teacher: (T , ∅, {T},S) ∈ CA

Question Time!

Can we formalize our security goals and reason about them?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

13/28

Security of ARBAC: Example

We can show that, given a specific initial user-to-role assignment, our
example policy leads to a conflict of interest: it is possible to have a user
who is both a Student and a Teaching Assistant

{(a,T), (b,S)} → {(a,T)}
→ {(a,T), (b,TA)}
→ {(a,T), (b,TA), (b,S)}

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

14/28

Role Reachability Problem

The most useful problem to solve for the security verification of ARBAC
is known as the role reachability problem.

Definition

Given an initial user-to-role assignment UR, a policy P and a role rg , the
role reachability problem amounts to checking whether there exists a
user-to-role assignment UR ′ such that UR →∗P UR ′ and rg ∈ UR ′(u) for
some user u.

This property sounds very weak... why is it so useful?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

15/28

Why Role Reachability?

Many useful problems can be reduced to role reachability.

Example (Mutual Exclusion)

Can the roles r1 and r2 be ever assigned together?

Encoding (let rg be a fresh, unassigned role):

1 assign a fresh irrevocable role r̂ to some user u

2 introduce a new can-assign rule (r̂ , {r1, r2}, ∅, rg)

3 check role reachability for rg

4 return the answer to point 3

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

16/28

Why Role Reachability?

Many useful problems can be reduced to role reachability.

Example (Bounded Safety)

Can the role r be assigned only to users {u1, . . . , uk}?

Encoding (let rg be a fresh, unassigned role):

1 assign a fresh irrevocable role r̂ to users u1, . . . , uk

2 introduce a new can-assign rule (r̂ , {r}, {r̂}, rg)

3 check role reachability for rg

4 invert the answer to point 3

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

17/28

Why Role Reachability?

Many useful problems can be reduced to role reachability.

Example (Availability)

Will the role r be always assigned to user u?

Encoding (let rg be a fresh, unassigned role):

1 assign a fresh irrevocable role r̂ to user u

2 introduce a new can-assign rule (r̂ , {r̂}, {r}, rg)

3 check role reachability for rg

4 invert the answer to point 3

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

18/28

Complexity of Role Reachability

The total number of possible user-to-role assignment is O(2|R|·|U|)

for R = 3 and U = 30, we have 260 ≈ 1.15× 1018 possibilities

the computational complexity of the role reachability problem was
proved to be PSPACE-complete [4]

How can we deal with this scary algorithmic complexity?

1 use restricted fragments of the ARBAC model

2 rely on approximated analysis techniques (false positives)

3 perform an aggressive pruning of the ARBAC policy

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

19/28

Restricted Fragments of ARBAC

Example (No Negation)

If the policy does not make use of negative preconditions, i.e., Rn = ∅ for
all the can-assign rules, then the complexity class of the role reachability
problem is P.

Example (No Revocation)

If the policy does not allow role revocation, i.e., CR = ∅, then the
complexity class of the role reachability problem is still NP-complete.

More fragments and full formal details are available in [4].

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

20/28

Restricted Fragments of ARBAC

The separate administration property greatly simplifies the solution to the
role reachability problem.

Definition

A policy P = (CA,CR) satifies the separate administration property if
and only if the set of roles R can be partitioned in two sets AR,RR of
administrative roles and regular roles respectively such that:

for each (ra,Rp,Rn, rt) ∈ CA: ra ∈ AR and Rp ∪ Rn ∪ {rt} ⊆ RR

for each (ra, rt) ∈ CR: ra ∈ AR and rt ∈ RR

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

21/28

Restricted Fragments of ARBAC

If a policy satifies the separation administration property, it is possible to
modify P = (CA,CR) and the initial UR as follows:

1 identify the set AR0 = {r ∈ AR | ∃u ∈ U : (u, r) ∈ UR}
2 revoke all the roles in AR0 6= ∅ from the users in UR

3 create a fresh user ua (the administrator) with a fresh role ra

4 replace the first component of all rules in CA ∪ CR with ra

5 keep only a single user for each role combination in UR

This does not change the complexity, but greatly reduces R and U.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

22/28

Restricted Fragments of ARBAC

Note that tracking just a single user for each role combination is unsound
when the separate administration property does not hold!

CA = {(r1, ∅, {r1}, r2}
CR = {(r1, r1)}
UR = {(a, r1), (b, r1)}

The role r2 is reachable here:

{(a, r1), (b, r1)} → {(a, r1)} → {(a, r1), (b, r2)}

However, r2 would not be reachable if we only kept (a, r1) in UR.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

23/28

Approximated Analyses of ARBAC

Approximated analyses can quickly return sound yet conservative results.

Example

Let P̂ stand for the policy obtained from P by removing all the negative
preconditions of the can-assign rules. If r is not reachable in P̂, then it is
not reachable in P. This can be checked in polynomial time.

Two notable examples of approximated analyses for ARBAC:

security types [1]

program analysis [2]

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

24/28

Pruning Algorithms

Pruning algorithms can simplify instances of the role reachability problem
by removing roles, users or administrative rules

intuition: many roles, users and rules are useless for a specific
instance of the role reachability problem

building block of many other analyses as well

state-of-the-art algorithm: aggressive pruning [3]

We will consider two simple algorithms here, called slicing algorithms.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

25/28

Forward Slicing

Compute an over-approximation of the reachable roles:

S0 = {r ∈ R | ∃u ∈ U : (u, r) ∈ UR}
Si = Si−1 ∪ {rt ∈ R | (ra,Rp,Rn, rt) ∈ CA ∧ Rp ∪ {ra} ⊆ Si−1}

Let S∗ be the fixed point to this set of equations, then:

1 remove from CA all the rules that include any role in R \ S∗ in the
positive preconditions or in the target

2 remove from CR all the rules that mention any role in R \ S∗

3 remove the roles R \ S∗ from the negative preconditions of all rules

4 delete the roles R \ S∗

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

26/28

Backward Slicing

Compute an over-approximation of the roles which are relevant to assign
the goal of the role reachability problem:

S0 = {rg}
Si = Si−1 ∪ {Rp ∪ Rn ∪ {ra} | (ra,Rp,Rn, rt) ∈ CA ∧ rt ∈ Si−1}

Let S∗ be the fixed point to this set of equations, then:

1 remove from CA all the rules that assign a role in R \ S∗

2 remove from CR all the rules that revoke a role in R \ S∗

3 delete the roles R \ S∗

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

27/28

References I

Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.
Compositional typed analysis of ARBAC policies.
In IEEE 28th Computer Security Foundations Symposium, CSF
2015, Verona, Italy, 13-17 July, 2015, pages 33–45. IEEE Computer
Society, 2015.

Anna Lisa Ferrara, P. Madhusudan, and Gennaro Parlato.
Security analysis of role-based access control through program
verification.
In 25th IEEE Computer Security Foundations Symposium, CSF
2012, Cambridge, MA, USA, June 25-27, 2012, pages 113–125.
IEEE Computer Society, 2012.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

28/28

References II

Anna Lisa Ferrara, P. Madhusudan, and Gennaro Parlato.
Policy analysis for self-administrated role-based access control.
In Tools and Algorithms for the Construction and Analysis of System
- 19th International Conference, TACAS 2013, volume 7795 of
Lecture Notes in Computer Science, pages 432–447. Springer, 2013.

Somesh Jha, Ninghui Li, Mahesh V. Tripunitara, Qihua Wang, and
William H. Winsborough.
Towards formal verification of role-based access control policies.
IEEE Trans. Dependable Sec. Comput., 5(4):242–255, 2008.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Access Control Verification

