
1/22

Security II - Information Flow Control

Stefano Calzavara

Università Ca’ Foscari Venezia

April 10, 2020

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

2/22

Introduction

A secret is something that is told to one person at a time...

How do we protect secrets in computer science?

access control: protect secret data using a password

encryption: protect secret data using a shared key

sandboxing: protect secret data by isolating processes

This approach is terribly coarse-grained: once a secret is accessible, we
cannot limit its use!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

3/22

Beyond Access Control

Real-world software often has access to confidential data

think about all the nice apps running in your mobile phone!

camouflaged malware might exfiltrate sensitive information

benign programs might accidentally leak personal data

how do we reason about the security of such software?

The area of information flow control studies the security of programs
manipulating confidential information.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

4/22

Attacker Model

We assume the set of variables V is partitioned in two by Γ : V → {L,H}
Γ(x) = L means that x has low confidentiality (public)

Γ(x) = H means that x as high confidentiality (private)

The attacker observes the execution of a program c and tries to derive
conclusions on the content of high confidentiality variables by inspecting
the content of low confidentiality variables alone.

We assume the attacker has access to the source code of c

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

5/22

Confidentiality?

The following program is clearly insecure:

h := r e a d p i n () ;
l := h ;

What about this program?

h := r e a d p i n () ;
l := h ∗ 2 ;

The program is insecure, because the attacker can halve the value of l to
reconstruct the value of h

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

5/22

Confidentiality?

The following program is clearly insecure:

h := r e a d p i n () ;
l := h ;

What about this program?

h := r e a d p i n () ;
l := h ∗ 2 ;

The program is insecure, because the attacker can halve the value of l to
reconstruct the value of h

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

6/22

Confidentiality?

What about this program?

h := r e a d p i n () ;
i f (h > 5000)

l := 0 ;
e l s e

l := 1 ;

The program is insecure, because it suffers from an implicit flow: part of
the confidential information is leaked via the control flow

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

6/22

Confidentiality?

What about this program?

h := r e a d p i n () ;
i f (h > 5000)

l := 0 ;
e l s e

l := 1 ;

The program is insecure, because it suffers from an implicit flow: part of
the confidential information is leaked via the control flow

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

7/22

Confidentiality?

What about this program?

h := r e a d p i n () ;
l := 0 ;
w h i l e (h > 0) {

h := h − 1 ;
l := l + 1 ;

}

The program is insecure, because the content of variable h is eventually
leaked into variable l , again via the control flow

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

7/22

Confidentiality?

What about this program?

h := r e a d p i n () ;
l := 0 ;
w h i l e (h > 0) {

h := h − 1 ;
l := l + 1 ;

}

The program is insecure, because the content of variable h is eventually
leaked into variable l , again via the control flow

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

8/22

Confidentiality?

What about this program?

h := r e a d p i n () ;
l := 0 ;
w h i l e (h > 5000)

h := h ;
l := 1 ;

It depends! Can the attacker observe termination or not?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

8/22

Confidentiality?

What about this program?

h := r e a d p i n () ;
l := 0 ;
w h i l e (h > 5000)

h := h ;
l := 1 ;

It depends! Can the attacker observe termination or not?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

9/22

Security Lattice

Rector

Professor Staff Student

Guest

Our ideas can be generalized to arbitrary
security lattices (L,v):

lattice = poset with unique least upper
bounds t and greatest lower bounds u
we assume Γ : V → L and we represent
the attacker as some ` ∈ L
for ` ∈ L, we let L = {`′ ∈ L | `′ v `}
and H = {`′ ∈ L | `′ 6v `}

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

10/22

Non-Interference

We assume the attacker cannot observe termination!

Definition (`-Equivalence)

Two memories µ, µ′ are `-equivalent, written µ ≈` µ
′, if and only if

∀x ∈ V : Γ(x) v `⇒ µ(x) = µ′(x).

Definition (Non-Interference)

A program c satisfies non-interference iff, for all labels ` and memories
µ1, µ2 such that µ1 ≈` µ2, we have: if 〈c , µ1〉 ⇓ µ′

1 and 〈c , µ′
2〉 ⇓ µ′

2,
then µ′

1 ≈` µ
′
2.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

11/22

Non-Interference: Example

i f (h > 5000)
l := 0 ;

e l s e
l := 1 ;

Before execution:

µ1 = {h 7→ 6789, l 7→ 0} ≈L µ2 = {h 7→ 1111, l 7→ 0}

After execution:

µ′
1 = {h 7→ 6789, l 7→ 0} 6≈L µ

′
2 = {h 7→ 1111, l 7→ 1}

This is a counter-example to non-interference!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

12/22

Proving Non-Interference

Definition (Non-Interference)

A program c satisfies non-interference iff, for all labels ` and memories
µ1, µ2 such that µ1 ≈` µ2, we have: if 〈c , µ1〉 ⇓ µ′

1 and 〈c , µ′
2〉 ⇓ µ′

2,
then µ′

1 ≈` µ
′
2.

Finding counter-examples is useful, but how can we prove that NI does
actually hold?

key problem: for all memories µ1, µ2 (universal quantification)

shall we do a manual proof for every c we want to show secure?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

13/22

Security by Typing

Let pc ∈ L stand for the program counter label, which is used to track
implicit flows. This is raised by conditionals and loops.

Two forms of type rules:

Γ ` e : ` reading as expression e has label ` under the typing
environment Γ

Γ, pc ` c reading as command c is well-typed under the typing
environment Γ and the program counter label pc

We do not discriminate between integers and booleans for simplicity.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

14/22

Typing Rules for Expressions

For expressions, we use rules of the form Γ ` e : `

Γ ` v : ` Γ ` x : Γ(x)
Γ ` e1 : ` Γ ` e2 : `

Γ ` e1 ⊕ e2 : `

Γ ` e1 : ` Γ ` e2 : `

Γ ` e1 ≤ e2 : `

Γ ` e : ` ` v `′

Γ ` e : `′

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

15/22

Typing Rules for Commands

For commands, we use rules of the form Γ, pc ` c

Γ, pc ` skip
Γ ` e : ` ` t pc v Γ(x)

Γ, pc ` x := e

Γ, pc ` c1 Γ, pc ` c2

Γ, pc ` c1; c2

Γ ` e : ` Γ, ` t pc ` c1 Γ, ` t pc ` c2

Γ, pc ` if e then c1 else c2

Γ ` e : ` Γ, ` t pc ` c

Γ, pc ` while e do c

Γ, pc ` c pc ′ v pc

Γ, pc ′ ` c

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

16/22

Typing Example: Safe Assignments

Let Γ = {h 7→ H, l 7→ L}

Γ ` l + 4 : L L v Γ(h)

Γ, L ` h := l + 4

Γ ` l − 3 : L L v Γ(l)

Γ, L ` l := l − 3

Γ, L ` h := l + 4; l := l − 3

Exercise: complete the rest of the type derivation

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

17/22

Typing Example: Unsafe Assignment

Let Γ = {h 7→ H, l 7→ L}

Γ ` h : H

Γ ` l : L L v H

Γ ` l : H

Γ ` h + l : H H 6v Γ(l)

Γ, L ` l := h + l

Notice that we could instead type-check h := h + l . Can you show it?

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

18/22

Typing Example: Conditionals

Let Γ = {h 7→ H}

...

Γ ` h ≤ 30 : H

Γ ` 5 : L L t H v Γ(h)

Γ,H ` h := 5 Γ,H ` skip

Γ, L ` if h ≤ 30 then h := 5 else skip

Notice that if we replaced the assignment h := 5 with l := 5 the program
would not type-check anymore!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

19/22

More Examples

Do these programs satisfy NI? Do they type-check or not?

while l ≤ 34 do l := l + 1

while h ≤ 34 do {l := l + 1; h := h + 1}

l := 0;while h ≤ 34 do {h := h}; l := 1

l := h; l := 0

if h ≤ 34 then l := 0 else l := 0

Exercise: try to type-check these simple examples!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

20/22

Security Theorem

We can prove the following result:

Theorem

If Γ, pc ` c, then c satisfies non-interference.

In other words, typing is sound. However, we already showed that typing
is not complete, i.e., there exist programs which satisfy NI but do not
type-check. This is common for type systems.

Example

The program l := h; l := 0 is secure, but does not type-check!

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

21/22

Integrity

NI formalizes confidentiality by requiring that high variables (private) do
not affect low variables (public).

A dual argument holds for integrity, where we can formally require that
low variables (tainted) do not affect high variables (trusted).

Example

The following program violates integrity:

if l > 0 then h := 0 else h := 1

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

22/22

Confidentiality + Integrity

HL

HH LL

LH

We can also combine confidentiality and
integrity in the same security lattice:

confidentiality: L vC H

integrity: H vI L

Moving up in the lattice enforces additional
restrictions on the use of data.

Stefano Calzavara Università Ca’ Foscari Venezia

Security II - Information Flow Control

