Security Il - ProVerif

Stefano Calzavara

Universita Ca’ Foscari Venezia

April 30, 2020

Universita
Ca'Foscari
Venezia

Stefano Calzavara

Security I - ProVerif

Introduction

ProVerif is a state-of-the-art protocol verification tool
m prosecco.gforge.inria.fr/personal/bblanche/proverif/
m accepts protocols expressed in a dialect of the applied pi-calculus

m supports verification of secrecy and authentication properties

Three possible outputs:
m safe: the security property cannot be violated

m unsafe: the security property might be violated, i.e., ProVerif finds a
counter-example (which might be a false positive)

m unsure: cannot prove security or find counter-examples
Occasionally, ProVerif might not terminate (!)

Stefano Calzavara

Security I - ProVerif

prosecco.gforge.inria.fr/personal/bblanche/proverif/

Structure of ProVerif Files

A ProVerif files normally includes:

declaration of names, constructors, destructors: the symbols that we
can use to write processes

definition of (parallel) processes: the protocol that we want to verify

definition of security queries: the goals of the security analysis

We will use the untyped syntax of ProVerif, which is easier to use
m no need of explicit type annotations

m execute with proverif -in pi file.pv

Stefano Calzavara

Security I - ProVerif

Names and Variables

Names are declared with the syntax:

free idl, ..., idn.

All names are public by default, unless you prepend the line with the
“private” keyword. This is equivalent to using the restriction operator.

No need to declare variables: they are automatically introduced and
bound when using inputs and lets.

Stefano Calzavara

Security I - ProVerif

Constructors and Destructors

Constructors are declared with the syntax:

fun const/n.

Destructors are defined by their equations:

reduc id(M1,...,Mn) = N.

Example

fun senc/2.
reduc sdec(senc(x,y),y) = x.

Stefano Calzavara

Security I - ProVerif

Processes

It is possible to define process macros by using the “let” keyword:

let ident = process—definition.

Macros can then be used in the process modeling the protocol to verify:

process new a; .; new k (identl | ident2)

Example

let init = out(c,m); in(d,x).
let relay = in(c,y); out(d,y).
process linit | !relay

Stefano Calzavara

Security 11 - ProVerif

Queries

Secrecy queries:

query attacker: m.

Non-injective agreement:

query ev:end(x,y,z) => ev:begin(x,y,z).

Injective agreement:

query evinj:end(x,y,z) => evinj:begin(x,y,z).

Stefano Calzavara

Security I - ProVerif

Example

free a, b, c.
fun senc/2.
reduc sdec(senc(x,y),y) = x.

query attacker: m.
query ev:end(x,y,z) => ev:begin(x,y,z).

let sender = event begin(a,b,m); out(c,senc(m,k)).
let receiver =
in(c,xm);

let ym = sdec(xm,k) in event end(a,b,ym).

process
new k; new m; (!sender | lreceiver)

Stefano Calzavara

Security I - ProVerif

e
ProVerif at Work

Demo Time!

Stefano Calzavara

Security I - ProVerif

e
Under the Hood

ProVerif works by translating crypto protocols into logical formulas

m sound: if no violation can be proved by the logical formulas, then
the protocol is secure

m incomplete: if a violation can be proved by the logical formulas, then
the protocol might still be secure (false positive)

More precisely, ProVerif is based on Horn clauses
W (pL(M) A A pi(Mi) = q(N)).

The resolution algorithm takes a set of Horn clauses and a goal 3X.p(M)
and checks whether the goal is provable from the clauses.

Stefano Calzavara

Security I - ProVerif

Checking Secrecy

We sketch here the ProVerif's approach to checking secrecy

F == attacker(M) the attacker knows M
| mess(L,M) the message M is output on channel L

Goal: prove that attacker(/N) does not hold for the secret N

Translation

Given a process P and a set of public names C, ProVerif outputs a set of
Horn clauses H(P, C):

H(P, C) = AtkKnows(C) U AtkRules U ProtRules(P).

Stefano Calzavara

Security I - ProVerif

E———
Modeling the Attacker

Modeling the initial attacker's knowledge is straightforward:
AtkKnows(C) = {attacker(n) | n € C}

The attacker’s knowledge takes advantage of the equational theory:

m for each constructor f of arity n:
attacker(xq) A ... A attacker(x,) = attacker(f(xi,...,xp))
m for each destructor g such that g(My,..., M) = N:

attacker(My) A ... A attacker(My) = attacker(N)

Stefano Calzavara

Security I - ProVerif

E———
Modeling the Attacker

The attacker’s knowledge increases during the protocol run:
m the attacker can read from known channels:

mess(x, y) A attacker(x) = attacker(y)
m the attacker can write known information on known channels:

attacker(x) A attacker(y) = mess(x, y)

Stefano Calzavara

Security I - ProVerif

Modeling the Protocol

Each output statement €(N) generates a Horn clause of the form:
mess(ci, M) A ... A mess(ck, M) = mess(c, N),

where My, ..., My are the previously received messages.

Example

Consider the process c¢(x).c(y).€((x,y)), ProVerif generates:

mess(c, x) A mess(c, y) = mess(c, (x, y))

Stefano Calzavara

Security I - ProVerif

Example: Unsafe Protocol

Protocol P: Assume A sends B the message s over channel net
m initial attacker's knowledge: AtkKnows({net}) = {attacker(net)}
m attacker's rules: attacker(x) A mess(x, y) = attacker(y) € AtkRules

m protocol rules: ProtRules(P) = {mess(net,s)}

We can show that:
H(P, C) F attacker(s),

which correctly suggests that the secrecy of s does not hold for P.

Stefano Calzavara

Security I - ProVerif

Final Advices

Undeclared identifiers are assumed to be public names, check your output
for warnings!

Modeling Assumptions

Ensure your model is capturing reality! What does the attacker know?
Can the same participant play multiple roles in the protocol?

Reachability Queries

You can use the syntax “query ev:end(x,y,z)" to ensure that an end
event is actually reachable (this should return false)

Stefano Calzavara

Security Il - ProVerif

