Security Il - Structural Operational Semantics

Stefano Calzavara

Universita Ca’ Foscari Venezia

April 9, 2020

Universita
Ca'Foscari
Venezia

Stefano Calzavara

Security Il - Structural Operational Semantics

Introduction

We now start our study of language-based security
m use of PL techniques to prove application security

m popular and rich research area, with many success stories

Fundamental questions:
syntax: what is a program?
semantics: what can a program do?
security: when is a program secure?

In this lecture, we will focus on the first two points.

Stefano Calzavara

Security Il - Structural Operational Semantics

N
Syntax of IMP

Three main syntactic categories: arithmetic expressions (a), boolean
expressions (b) and commands (¢)

a = n|x|at+ala—alaxa
b == true|false|a<a|bAb|bVb]|-b
¢ u= skip|x:=a| c;c|if bthen c else c | while b do ¢

Here, n € Z ranges over integers and x € V ranges over variables.

Example

x:=3;if =(x <5) then y :=x else y :=0

Stefano Calzavara

Security Il - Structural Operational Semantics

Configurations

Since IMP models imperative programs, its semantics depends upon and
affects the state of memory
m a memory is a total function p :V — Z assigning a value (integer)
to each variable
m we write u[x — n] for the memory obtained from p by rebinding the
variable x to the value n
m a configuration is a pair (c,)
Programs start in an initial configuration and compute until termination.

Stefano Calzavara

Security Il - Structural Operational Semantics

Small-Step Semantics

A small-step semantics specifies the operation of a program ¢ one step at
a time:

m rules of the form (c, u) — (c’, u’)

m the rules are applied until we eventually hit a configuration of the
form (skip, u’') for some p”

m if this is not possible, e.g., in the case of a non-terminating while
loop, the computation goes on forever

We need auxiliary rules for arithmetic and boolean expressions as well.

Stefano Calzavara

Security Il - Structural Operational Semantics

Small-Step Semantics of Arithmetic Expressions

For arithmetic expressions, we use rules of the form (a, u) — @’

(A-VAR) (A-BIN)
(1) = () (n @ ng, 1) = m @y
(A-LEFT) (A-RIGHT)
<317y’> - all <32’ /u‘> — 3/2
(a1 ® ap, 1) — a] @ an (ny @ az, 1) — ny @ ay

Exercise: write down similar rules (b,) — b’ for boolean expressions.

Stefano Calzavara

Security Il - Structural Operational Semantics

Arithmetic Expressions: Example

To exemplify, pick the memory p = {x — 5} and the expression 3 % x + x

(A-VAR)
(A-RIGHT)
(A-LEFT)

{(x,p) =5
(3% x,u) = 3%5
(B x4+ x,u) = 3%5+x

How many more steps are needed before eventually evaluating to 207

Stefano Calzavara

Security Il - Structural Operational Semantics

Small-Step Semantics of Commands (1/3)

For commands, we use rules of the form (c, u) — (c’, 1)
(C-Ascl)
(a,p) = &
(x:=a,p) = (x:=a',u)

(C-AsG2)
(x:=n,) — (skip, u[x — n])

(C-SEQ1)
(e,) = {cp, 1)
(c1s o,) = (cps 2, 1)

(C-SEQ2)
(skip; c2, i) — (co, 1)

Stefano Calzavara

Security Il - Structural Operational Semantics

Small-Step Semantics of Commands (2/3)

(C-Conbpl)
(b,p) = b’
(if b then ¢ else ¢, u) — (if b’ then ¢ else ¢, 1)

(C-Conb2)
(if true then c; else ¢, p) — (¢, 1)

(C-ConD3)
(if false then ¢ else ¢, u) — (¢, 1)

Stefano Calzavara

Security Il - Structural Operational Semantics

Small-Step Semantics of Commands (3/3)

Finally, we define the semantics of while by loop unrolling

(C-WHILE)
(while b do ¢, 1) — (if b then (c; while b do c) else skip, 1)

Notice that this might lead to non-terminating computations!

(while true do skip, u) — (if true then (skip; while true do skip) else skip, 1)
— (skip; while true do skip,)
—

(while true do skip, i)

Stefano Calzavara

Security Il - Structural Operational Semantics

Commands: Example

Evaluate x :== 3+ y;z := x in the memory = {x— 0,y — 2,z — 0}

(x:=3+y,z:=x,u) (x:=3+2z:=x,)
(x:=5;z:=x,u)

(skip; z ;== x, {x — 5,y — 2,z +— 0})
(z —X{x>—>5 y 2,z 0})
(z:=5,{x—5,y+— 2,z 0})

(

skip, {x — 5,y — 2,z — 5})

A A AN

Stefano Calzavara

Security Il - Structural Operational Semantics

Big-Step Semantics

A big-step semantics specifies the operation of a program ¢ in terms of
the final result of its computation:

m rules of the form (c, u) | 1/

m the rules are applied to build a proof tree, which directly yields the
final memory p/

m if this is not possible, e.g., in the case of a non-terminating while
loop, no proof tree can be built!

We need auxiliary rules for arithmetic and boolean expressions as well.

Stefano Calzavara

Security Il - Structural Operational Semantics

Big-Step Semantics of Arithmetic Expressions

For arithmetic expressions, we use rules of the form (a, u) | n

(A-BIN)
<ala ,LL> ‘U n <a2a/'L> ‘U’ na
(a1 @ az,) § m ®m

(A-INT) (A-VAR)
(n,p) 4 n {x, 1) 4 u(x)

Exercise: write down similar rules (b, i) |} b’ for boolean expressions.

Stefano Calzavara

Security Il - Structural Operational Semantics

.
Big-Step Semantics of Commands (1/2)

For commands, we use rules of the form {(c,) | 1’

(C-Sk1p) (C-Asc)
(skip,) 4 p m b
(x=a,p) 4 p[x > n]
(C-SEQ) (C-Conbnl)
(com) b (e, pa) I 2 (byp) I true (c1,p) I a
(c1; o) 4 2 (if b then ¢; else o, u) § 11
(C-Conp2)

(byp) | false (co, 1) I 2
(if b then c; else ¢, p) | u2

Stefano Calzavara

Security Il - Structural Operational Semantics

.
Big-Step Semantics of Commands (2/2)

Finally, we define the semantics of while by induction

(b,) | false
(while b do c,u) | p

(bp) Ytrue (c,p) §p (while bdoc,p) I p"
(while b do ¢, u) | u”

Exercise: try to evaluate (while true do skip,). What happens?

Stefano Calzavara

Security Il - Structural Operational Semantics

Commands: Example

Evaluate x := 3+ y; z := x in the memory = {x— 0,y — 2,z — 0}

Gmi3 (w2
B4y, 5 (x,u[x — 5]y U5
(x =34y, I p[x — 5] (z:=x,pu[x = 5]) § {x =5,y =2z 5}
(x=3+4+y;z:=x,u) § {x = 5,y—2,z+— 5}

Stefano Calzavara

Security Il - Structural Operational Semantics

Small-Step vs Big-Step Semantics

The following theorem links the two presented semantics

Theorem

For all ¢, p, ' we have (c, i) —* (skip, 1’} if and only if (c,u) | .

Notice that the theorem says nothing about diverging computations: the
connection only holds true for terminating behaviours!

Stefano Calzavara

Security Il - Structural Operational Semantics

Small-Step vs Big-Step Semantics

Small-step semantics:
-+ can model complex language features, like concurrency, divergence...
- lot of rules and work to prove properties

Big-step semantics:
+ very natural specification, similar to a recursive interpreter
+ easier to prove properties, since we have less rules

- all programs without final configurations (infinite loops, errors, stuck
configurations) look the same

Stefano Calzavara

Security Il - Structural Operational Semantics

-
Extending IMP

Assume we change the syntax of IMP as follows:

% n | true | false
e = vi]ix|edel|le<e|eAe|eVel—e
= skip | x:=e| c¢;c |if e then c else c | while e do ¢

This allows us to write programs that we could not write before!

Example

x := true;if (x V false) then y :=2 else y :=5

Stefano Calzavara

Security Il - Structural Operational Semantics

Typed IMP

But we can also write programs that we don't like!

Example

x := 4;if (x V false) then y :=2 else y :=5

To solve these issues, we can use a type system
m we let 7 = {int, bool} stand for the set of types

m we let [: YV — T represent a typing environment mapping variables
to their expected type

m we define type rules to define acceptable programs

Stefano Calzavara

Security Il - Structural Operational Semantics

Type Rules for Expressions

For expressions, we use rules of the foom e : t

NFn:int I F true : bool I+ false : bool M x:r(x)

MFe :int Fe:int [+ e : bool I+ e : bool
e e int Fe Ae:bool

lFe :int Fe:int
e < e :bool

Stefano Calzavara

Security Il - Structural Operational Semantics

Type Rules for Commands

For commands, we use rules of the form I' - ¢

. Mx:t et M Mo
I skip _
lEx:=e rl—Cl;Cz
I+ e: bool MNe-a Mo I+ e:bool MN-c
I+ if e then ¢ else ¢ [- while e do ¢

Stefano Calzavara

Security Il - Structural Operational Semantics

-
Typing Example

We show that x := 4;if (x V false) then y :=2 else y :=5 is ill-typed in
the environment [= {x — int, y — int}

I x : bool I - false : bool
M- x:int F=4:int I+ x V false : bool
Mr-x:=4 I+ if (x V false) then y :==2 else y :=5
IE x:=4;if (xVfalse) then y ;=2 else y :=5

Observe in particular that x must be given two different types in the
derivation, which is not possible in our type system.

Stefano Calzavara

Security Il - Structural Operational Semantics

