
User Authentication (ctd.)
System Security (CM0625, CM0631) 2023-24
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Preventing leakage and guess

Problem 1: What if the password is
sniffed?

Solution: only use password over
encrypted channels

Example 1: passwords and card
numbers sent over https

Example 2: telnet was an insecure
remote terminal client sending
passwords in the clear

Problem 2: What if password is
guessed?

Solution 1: Disable the service after
MAX attempts

Example: lock SIM after 3 attempts

Solution 2: Use strong passwords

⇒ useful in offline attacks when the
service cannot be disabled

“Encrypted” passwords

Problem 3: How are password stored on the server?

IDEA: The server stores a one-way hash of passwords

Definition (hash function). A hash function h computes efficiently a fixed length
value h(x)=z called digest, from an x of arbitrary size.

Definition (one-way hash function). A hash function h is one-way if given a
digest z, it is infeasible to compute a preimage x’ such that h(x’)=z

⇒ Finding a pre-image is computationally infeasible

User is asked for login, pwd

The system retrieves the stored hash z
of the password for the given login

The system computes h(pwd) and
checks it is the same as z

⇒ Since h is one-way, in principle, no password can be recovered from its hash z

Verification of hashed passwords

==
?

login hash

... ...

r1x z

... ...

Dictionary attacks

Brute force: even if one-way hashes
cannot be inverted, an attacker can
try to compute hashes of easy
passwords and see if the hashes
match

Note: It is possible to precompute the
hashes of a dictionary and just
search for z into it

Example:

$ echo -n "mypassword" | sha256sum
89e01536ac207279409d4de1e5253e01f4a
1769e696db0d6062ca9b8f56767c8 -

Password "mypassword" is clearly
weak, we can search for the hash
directly in search engines or using
existing online services

https://md5decrypt.net/en/Sha256/

Salting passwords

Precomputation of password hashes is prevented by adding a random salt

h(pwd,s) == z

login hash salt

...

r1x z s

...

?

“Slow” hashes

Instead of using a single hash, hashes are usually iterated so to slow down
brute-force

Example: Linux passwords

goofy:6Lc5mF7Mm$03IT.AXVhC3Vl4/rLAdomffgv5feOlKBzNGtpEei
2dBgK9z/4QBqM3ZMRK4qcbbYJhkAE.2KscEZx0Am/y50:

● 6: SHA512-based hashing, iterated 5000 times, by default
● Lc5mF7Mm: salt
● 03IT.AXVhC3...Zx0Am/y50: digest

Rainbow tables

Suppose we want to precompute hashes for a huge set of passwords (not just
words in a dictionary)

● Storage and searching becomes problematic

Rainbow tables are a technique that allows for a time/space tradeoff

● Chains from a password p to a final hash z
● p is hashed and then “reduced” to p’
● p → h(p) → p’ → h(p’) → … pf → h(pf) = z

Reduction is any function returning a candidate pwd

p = pwd
for (i in [0,C_len-1]):

print(p)
h = hash(p)
print(h)
p = red(h)

hash is sha256

red takes the first 8 bytes and
 makes them “printable”

A simple
example

Simple example

donald
4138cfbc5d36f31e8ae09ef4044bb88c0c9c6f289a6a1c27b335a99d1d8dc86f
...
6bI!l%"d
c880c7f068e2b4fe6ec76fea6756d8b1ee92b0d96d0b867be3b952a3ac75cf96
k#j6h(WD
75532eec682a5c65f5a6f8717afc00f67f2518f8bd251865374447cb6bc50725
uS.2h*\e
9d384a0c159b257534258b255023062cbf560491de12ca79ddffca052a5b67b5
@8Jir>%u
6b16a5147f320f182d8d55ed5631203cede6fde5292ba3bd697cb430c2102d22
ksHq"2lu
25f94e180a5abcf4c4c70ab68fc2c6365dee0778e86652fdef8ddeab60d939d2

Searching rainbow tables

Suppose we have n chains of length C_len

(p1,h1) (p2,h2) … (pn,hn)

and we want to invert h

We proceed as follows:

r=h, i=0
while (r not in {h1,h2, …, hn} and i < C_len):

r = hash(red(r))
i++

If h is in the chain we find it!

donald
4138cfbc5d36f31e8ae09ef4044bb88c0c9c6f289a6a1c27b335a99d1d8dc86f
...
6bI!l%"d
c880c7f068e2b4fe6ec76fea6756d8b1ee92b0d96d0b867be3b952a3ac75cf96
k#j6h(WD
75532eec682a5c65f5a6f8717afc00f67f2518f8bd251865374447cb6bc50725
uS.2h*\e
9d384a0c159b257534258b255023062cbf560491de12ca79ddffca052a5b67b5
@8Jir>%u
6b16a5147f320f182d8d55ed5631203cede6fde5292ba3bd697cb430c2102d22
ksHq"2lu
25f94e180a5abcf4c4c70ab68fc2c6365dee0778e86652fdef8ddeab60d939d2

Inverting the hash

If we find the hash after k steps we do

r = p // the password of the matching chain
for C_len - k - 1 steps:
 r = red(hash(r))
return r

Inverting the hash

adonald
4138cfbc5d36f31e8ae09ef4044bb88c0c9c6f289a6a1c27b335a99d1d8dc86f
A8r_]69{
b6993563cc9fb06b68bc8766b2b556a179557bfb306daade3f032dcf208e9865
Y<5coBSk
1af94c530693bd80abb1bd9eca143324eb3185fbf559634167ece0aa494fd2a1
w?LSc6`#
e5138aee690f1ec23e4fbee436138c51b955b3438a96be23188a7277f1554530
+p-4il{e
93bfa6db6c82dcc1bdf6c9de7682f236817f2e4b25907f7934b0d8d8c28b3107
6bI!l%"d
c880c7f068e2b4fe6ec76fea6756d8b1ee92b0d96d0b867be3b952a3ac75cf96
k#j6h(WD
75532eec682a5c65f5a6f8717afc00f67f2518f8bd251865374447cb6bc50725
uS.2h*\e
9d384a0c159b257534258b255023062cbf560491de12ca79ddffca052a5b67b5
@8Jir>%u
6b16a5147f320f182d8d55ed5631203cede6fde5292ba3bd697cb430c2102d22
ksHq"2lu
25f94e180a5abcf4c4c70ab68fc2c6365dee0778e86652fdef8ddeab60d939d2

k = 4

C_len - 4 - 1 = 10 - 5 = 5

Merging chains and space/time tradeoff

Chains can merge, in this case we
lose coverage: after two chains
merge, next hashes will overlap

IDEA: Make redi depend on step i

⇒ if two chains merge they will split,
unless they merge at the very
same step!

This is where the name “Rainbow”
comes from!

P is the set of passwords that we
want to cover (assume no collisions)

⇒ We need about |P| / C_len chains
(space decreases if we increase
the chain length)

⇒ Searching time is proportional to
C_len2 (notice that with redi we
cannot reuse red(hash(r))
from previous steps)

Passwords

Class: Something known

Passwords are stored “encrypted”:

● One-way hash of password and
a random salt

● Iterated hash: slow down brute
force

Rainbow tables are a particularly
efficient time-space tradeoff

● Countermeasure: random salt

(summary)

Attacks on passwords (1)

Offline attacks: through rainbow
tables and dictionaries, e.g. the 32M
passwords leaked in the rockyou.com
SQLi attack of 2009

Countermeasures:

● Salt, slow hashes, password
policies (increase entropy)

● Restrict access to password file
(mitigation)

Online attacks on single accounts:
try easy passwords for one account

Countermeasures:

● Lock the account after MAX
attempts (e.g. MAX=5)

● Same countermeasure for SIM,
smartphone, bank PINs

https://www.theguardian.com/technology/blog/2009/dec/15/rockyou-hacked-passwords
https://www.theguardian.com/technology/blog/2009/dec/15/rockyou-hacked-passwords

Attacks on passwords (2)

Popular passwords: try a popular
password on many accounts.

Countermeasures:

● Password policies
● Checking IPs (blacklisting)

Password guessing on a single user:
guess an easy password for a
specific user, e.g., using specific
information about that user (name,
age, etc.)

Countermeasures:

● User training
● Password policies

Attacks on passwords (3)

Workstation hijacking: wait until a
workstation il left unattended (bypass
user authentication)

Countermeasures:

● lock after a period on inactivity
● … same for smartphones

User mistakes: written, shared, and
preconfigured passwords plus social
engineering

Countermeasures:

● User training
● Use of two-factor authentication

Attacks on passwords (4)

Multiple password use: leaking a
password that is reused across
accounts is more impactful

Countermeasures:

● User training
● Forbid password reuse when

possible (e.g. on devices in the
same network)

Interception: password should only
be transmitted is a secure way

Countermeasures:

● Use a protocol that ensures
authenticity of recipients and
confidentiality (e.g. TLS)

● …. Just sending the password
encrypted does not work!

NIST SP 800-63-2 suggests the
following alternative rules:

● Password must have at least
sixteen characters (basic16)

● Password must have at least
eight characters including an
uppercase and lowercase letter,
a symbol, and a digit. It may not
contain a dictionary word
(comprehensive8)

xkcd.com

Password policies

Passphrase of N words picked at random from a fixed list, by rolling 5 dice

● 5 dice gives 65 = 7776 possible words
● Entropy for each word is log27776 ~ 12.9 bits

The whole entropy is thus 12.9 * N

● for N=4 entropy is ~52 bits
● for N=5 entropy is ~64 bits
● for N=6 entropy is ~77 bits

Word list: http://world.std.com/~reinhold/dicewarewordlist.pdf

Diceware

http://world.std.com/~reinhold/dicewarewordlist.pdf

Something possessed. Check the
possession of a device

● ATM cards, credit cards,
smartcards, One Time
Password (OTP) generators,
USB crypto-tokens

Token-based
authentication

Memory cards

Passive card with a memory

Examples:

● Old ATM cards with magnetic
stripe

● Hotel cards to open doors

When paired with a PIN the attacker
needs to steal/duplicate both

Problems:

● Passive cards are usually simple
to clone

Example:

● Old ATM cards were cloned by
putting a fake reader and a
camera (to also steal the PIN)

Smart cards

Smart token with an embedded chip

Various devices:

● Standard smartcard
● USB token
● Small portable objects
● Bigger objects with display

and/or keyboard

Smart card interface and protocol

Interface:

● Contact: a conductive contact
plate on the surface of the card
(typically gold plated) for
transmission of commands,
data, and card status

● Contactless: Both the reader and
the card have an antenna, and
communicate using radio
frequencies

Protocol:

1. Static: token provides a fixed
secret (as for passive cards)

2. One time password (OTP): the
token generates a fresh OTP that
is used for authentication

3. Challenge-response: a challenge
is processed by the token that
produces a response (e.g.
digitally signed)

One Time Passwords (OTP)

Once a secret is leaked it can be used to authenticate many times:

● sniffed password
● cracked password hash
● cloned passive token

One Time Passwords (OTPs) are never reused

They mitigate password leakage/crack by allowing for a single authentication
(es. bank OTPs)

⇒ The token and the computer system must be kept synchronized so the
computer knows the OTP that is current for this token.

Lamport’s hash-based OTP

Given a secret s and a one-way hash function h we compute:

ht(s) which is: h(h(… h(s)…)) t times

We let the Claimant and the Verifier share this value

● The Claimant uses the list of passwords:
ht-1(s), ht-2(s), … h(s), s

● The Verifier computes h(pwd) and checks if it is equal to the stored hash:
h(ht-1(s)) == ht(s)

● If the check succeeds the Verifier stores ht-1(s)

Lamport’s hash-based OTP

passwords: ht-1(s) ht-2(s) … h(s) s

stored hashes: ht(s) ht-1(s) … h2(s) h(s)

Limitation: Only t authentications are possible

Security: Computing next passwords from the current is equivalent to compute
the preimage of h, which is infeasible (h is one-way)

⇒ More secure than storing a shared secret “seed” used to generate the OTP

RSA SecurID Breach (March 2011)

● The values of secret “seeds”
were stored insecurely and have
been leaked through phishing

⇒ 40M of devices replaced, big
companies attacked, huge image
damage for RSA

Case study: RSA seed breach

Something inherent. Check
biometric features of users

● Signatures, fingerprints, voice,
face, hand geometry, retinal
patterns, iris, ...

Biometrics

Biometrics

1. Enrollment: features are
extracted and stored in database

2. Verification: features are
extracted and compared with
the stored ones

A delicate balance:

No impersonation (false positives)
but correct users should be identified
most of the times (no false negative)

Problem: A breach in the biometric
database has high impact:

● biometric data is unique, belongs
to users

● differently from passwords it
cannot be changed if leaked

New attacks: adversarial machine
learning

https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php
https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php

