User Authentication (ctd.)

System Security (CM0625, CM0631) 2023-24
Universita Ca’ Foscari Venezia

Riccardo Focardi

www.unive.it/data/persone/5590470
secgroup.dais.unive.it

Universita
" Ca'Foscari
Venezia

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Preventing leakage and guess

Problem 1: What if the password is
sniffed?

Solution: only use password over
encrypted channels

Example 1: passwords and card
numbers sent over https

Example 2: telnet was an insecure
remote terminal client sending
passwords in the clear

Problem 2: What if password is
guessed?

Solution 1: Disable the service after
MAX attempts

Example: lock SIM after 3 attempts
Solution 2: Use strong passwords

=> useful in offline attacks when the
service cannot be disabled

“Encrypted” passwords

Problem 3: How are password stored on the server?
IDEA: The server stores a one-way hash of passwords

Definition (hash function). A hash function h computes efficiently a fixed length
value h(x)=z called digest, from an x of arbitrary size.

Definition (one-way hash function). A hash function h is one-way if given a
digest z, it is infeasible to compute a preimage x' such that h(x)=z

= Finding a pre-image is computationally infeasible

Verification of hashed passwords

User is asked fwd \{\ login hash
The system retrieves the stored hash(z e
of the password for the given login .

The system compute @ nd

checks it is the same as z

?

- — =

= Since h is one-way, in principle, no password can be recovered from its hash z

Dictionary attacks

Brute force: even if one-way hashes
cannot be inverted, an attacker can
try to compute hashes of easy
passwords and see if the hashes
match

Note: It is possible to precompute the
hashes of a dictionary and just
search for z into it

Example:

S echo -n "mypassword" | sha256sum
89e01536ac207279409d4de1e5253e01f4a
1769e696db0d6062ca9b8f56767¢c8 -

Password "mypassword"” is clearly
weak, we can search for the hash
directly in search engines or using
existing

https://md5decrypt.net/en/Sha256/

Salting passwords

Precomputation of password hashes is prevented by adding a random salt

login hash salt

rlx Z S

?

h(pwd,s) == z

“Slow” hashes

Instead of using a single hash, hashes are usually iterated so to slow down
brute-force

Example: Linux passwords

goofy :S6SLc5mF7MmSO3IT.AXVhC3V14/rLAdomffgv5fe01KBzNGtpEei
2dBgK9z/4QBqM3ZMRK4qcbbYJhKAE .2KscEZx0Am/y50:

e 6:SHAS512-based hashing, iterated 5000 times, by default
e Lc5mF7Mm: salt
e O3IT.AXVhC3...Zx0Am/y50: digest

Rainbow tables

Suppose we want to precompute hashes for a huge set of passwords (not just
words in a dictionary)

e Storage and searching becomes problematic
Rainbow tables are a technique that allows for a time/space tradeoff

e Chains from a password p to a final hash z
e pis hashed and then “reduced” to p’

e p—h(p)—p —h(p)—..p,—h(p)=2

Reduction is any function returning a candidate pwd

A simple
example

p = pwd
for (i in [6,C_len-1]):
print(p)
= hash(p)
print(h)
p = red(h)

hash is sha256

red takes the first 8 bytes and
makes them “printable”

Simple example

donald
4138cfbc5d36f31e8ae09ef4044bb88cBc9c6f289a6a1c27b335a99d1d8dc86f

6bI!'1%"d
c880c7f068e2bdfebec76feab756d8b1ee92b0d96dOb867be3b952a3ac75cf96
k#j6h (WD
75532eec682a5c65f5a6f8717afcB0f671f2518f8bd251865374447cbb6bc50725
uS.2h*\e
0d384a0c159b257534258b255023062cbf560491de12ca79ddffcaB52a5b67b5
@8Jir>%u
6b16a51471f320f182d8d55ed5631203cedeb6fde5292ba3bd697¢cb430c2102d22
ksHq"21u
25f94e180a5abcf4c4c70ab68fc2c6365deeB778e86652fdef8ddeab60d939d2

Searching rainbow tables

Suppose we have n chains of length C_len

(p,,h,) (p,,h,) « (p.,h)
and we want to invert h

We proceed as follows:

r=h, i=0

while (r not in {h1,h2, .., hn} and i < C_len):
r = hash(red(r))
1++

If his in the chain we find it!

donald
4138cfbc5d36f31e8ae09ef4044bb88cOc9c6f289a6al1c27b335a99d1d8dc86f

6bI!1%"d

c880c7f068e2b4fe6ec76feab6756d8blee92b0do96dOb867be3b952a3ac75¢cf96
k#36h (WD JL
75532eec682a5c65f5a6f8717afc00f67f2518f8bd251865374447cb6bc50725
uS.2hx\e ‘
9d384a0c159b257534258b255023062cbf560491del2ca79ddffca®052a5b67b5
@8Jir>%u . 4
6b16a51471f320f182d8d55ed5631203cede6fde5292ba3bd697cb430c2102d22
ksHg"2lu ‘

25f94el180a5abcf4c4c70ab68fc2c6365dee®778e86652fdef8ddeab60d939d2

Inverting the hash

If we find the hash after k steps we do

r =p // the password of the matching chain
for C_len - k - 1 steps:

r = red(hash(r))
return r

Inverting the hash

—

adonald
4138cfbc5d36f31e8ae9ef4044bb88cOc9c6f289a6a1c27b335a99d1d8dc86f
A8r_]169{
b6993563cc9fb06b68bc8766b2b556a179557bfb306daade3f032dcf208e9865
Y<5coBSk
1af94c530693bd80abblbd9ecal43324eb3185fbf559634167ece0aad94fd2al [C_Ien -4-1= 10 -5=5
w?LSc6" #
e5138aeeb690flec23e4fbee436138c51b955b3438a96be23188a72771f1554530
+p-4il{e
93bfabdb6c82dcclbdf6c9de7682123681712e4b25907f7934b0d8d8¢c28b3107
6bI!1%"d -
c880c7f068e2b4fe6ec76fea6756d8bhlee92b0d96dOb867be3b952a3ac75¢cf96
k#j6h (WD
75532eec682a5c65f5a6f8717afc00f67f2518f8bd251865374447ch6bc50725
uS.2hx\e
9d384a0c159b257534258b255023062cbf560491del2ca79ddffca®52a5b67b5 S k
@83Jir>%u
6b16a5147f320f182d8d55ed5631203cede6fde5292ba3bd697¢ch430¢c2102d22
ksHq"21lu
25f94e180a5abcf4c4c70ab68fc2c6365dee0778e86652fdef8ddeabh60d939d2

—

4

Merging chains and space/time tradeoff

Chains can merge, in this case we
lose coverage: after two chains
merge, next hashes will overlap

IDEA: Make red. depend on step i

= if two chains merge they will split,
unless they merge at the very
same step!

This is where the name “Rainbow”
comes from!

P is the set of passwords that we
want to cover (assume no collisions)

= We need about |P| / C_len chains
(space decreases if we increase
the chain length)

= Searching time is proportional to
C_len* (notice that with red. we
cannot reuse red(hash(r))
from previous steps)

Passwords

(summary)

Class: Something known
Passwords are stored “encrypted”:

e One-way hash of password and
a random salt
Iterated hash: slow down brute
force

Rainbow tables are a particularly
efficient time-space tradeoff

e Countermeasure;: random salt

Attacks on passwords (1)

Offline attacks: through rainbow Online attacks on single accounts:
tables and dictionaries, e.g. the 32M try easy passwords for one account
passwords leaked in the
of 2009 Countermeasures:
Countermeasures: e Lock the account after MAX
attempts (e.g. MAX=5)
e Salt, slow hashes, password e Same countermeasure for SIM,
policies (increase entropy) smartphone, bank PINs

e Restrict access to password file
(mitigation)

https://www.theguardian.com/technology/blog/2009/dec/15/rockyou-hacked-passwords
https://www.theguardian.com/technology/blog/2009/dec/15/rockyou-hacked-passwords

Attacks on passwords (2)

Popular passwords: try a popular Password guessing on a single user:
password on many accounts. guess an easy password for a
specific user, e.g., using specific

Countermeasures: information about that user (hame,

e Password policies age, etc.)
e Checking IPs (blacklisting) Countermeasures:
e User training

e Password policies

Attacks on passwords (3)

Workstation hijacking: wait until a User mistakes: written, shared, and
workstation il left unattended (bypass preconfigured passwords plus social
user authentication) engineering
Countermeasures: Countermeasures:

e lock after a period on inactivity e User training

e ..same for smartphones e Use of two-factor authentication

Attacks on passwords (4)

Multiple password use: leaking a Interception: password should only
password that is reused across be transmitted is a secure way
accounts is more impactful
Countermeasures:
Countermeasures:
e Use a protocol that ensures
e User training authenticity of recipients and
e Forbid password reuse when confidentiality (e.g. TLS)
possible (e.g. on devices in the e ... Just sending the password

same network) encrypted does not work!

Password policies

NIST SP 800-63-2 suggests the
following alternative rules:

Password must have at least
sixteen characters (basic16)
Password must have at least
eight characters including an
uppercase and lowercase letter,
a symbol, and a digit. It may not
contain a dictionary word
(comprehensive8)

alalulalalaia]=le]=lalalalz]=]= U ~28ﬁB~I'7;50FENTpOP\’ WAS IT TROMBONE? NO,
T G || . |
UNKNOWN 0o ar 2 :
BASE WORD i o My -
e Y =3 owsAr || gomE svmeo‘:.! =
Tr@u b4d or &3 1000 GueseES s
e v A s
CJ%PS? c:orlr'%c{t;lﬁ e W?LERA sl U2 S o 2o
E‘Bs:c' L e DIFFicOLTY 0 GUESS: | | DIFFICULTY TO REMEMBER:
PUNCTURTION
{ YOU CAN AOD A PEW MORE BTs TO snte
R, o0 EASY HARD
~ Y4 BITS OF ENTROPY
ooooooponooao
0oOoooooooon
correct horse battery staple —
pi— ‘I L_-r__a = ol s
ooc]lf_l o0 ooog T] EE”"“—‘] E;E} Lj poOnoooooano
DoooC _m:’ ’J 2 2"=5% YEARS AT
\ - 1000 GUESSES/SEC
COMMON WORDS DIFFICOLTY To GUESS: oumcz:.;;; TO REMEMBER:
HARD MEMORYZED IT

THROUGH 20 YEARS Cf EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS,

xkcd.com

Diceware

Passphrase of N words picked at random from a fixed list, by rolling 5 dice

e 5dice gives 6° = 7776 possible words
e Entropy for each word is log, 7776 ~ 12.9 bits

The whole entropy is thus 12.9 * N

e for N=4 entropy is ~52 bits
e for N=5 entropy is ~64 bits
e for N=6 entropy is ~77 bits

Word list;

http://world.std.com/~reinhold/dicewarewordlist.pdf

Something possessed. Check the

TO ke n - b a S e d possession of a device
authentication [N

Password (OTP) generators,
USB crypto-tokens

Memory cards

Passive card with a memory : Problems:
Examples: . e Passive cards are usually simple
to clone

e Old ATM cards with magnetic
stripe Example:

e Hotel cards to open doors
e Old ATM cards were cloned by

When paired with a PIN the attacker putting a fake reader and a
needs to steal/duplicate both camera (to also steal the PIN)

Smart cards

Smart token with an embedded chip

Various devices:

e Standard smartcard

e USB token

e Small portable objects

e Bigger objects with display a

and/or keyboard

Smart card interface and protocol

Interface:

Contact: a conductive contact
plate on the surface of the card
(typically gold plated) for
transmission of commands,
data, and card status
Contactless: Both the reader and
the card have an antenna, and
communicate using radio
frequencies

Protocol:

1.

3.

Static: token provides a fixed
secret (as for passive cards)
One time password (OTP): the
token generates a fresh OTP that
is used for authentication
Challenge-response: a challenge
is processed by the token that
produces a response (e.qg.
digitally signed)

One Time Passwords (OTP)

Once a secret is leaked it can be used to authenticate many times:

e sniffed password
e cracked password hash
e cloned passive token

One Time Passwords (OTPs) are never reused

They mitigate password leakage/crack by allowing for a single authentication
(es. bank OTPs)

= The token and the computer system must be kept synchronized so the
computer knows the OTP that is current for this token.

Lamport's hash-based OTP

Given a secret s and a one-way hash function h we compute:
ht(s) whichis: h(h(.. h(s)..)) ttimes

We let the Claimant and the Verifier share this value

e The Claimant uses the list of passwords:
ht1(s), h*2(s), .. h(s), s

e The Verifier computes h(pwd) and checks if it is equal to the stored hash:
h(h**(s)) == h%(s)

e If the check succeeds the Verifier stores h*"1(s)

Lamport's hash-based OTP

passwords: ht1(s) ht2(s) .. h(s) s

stored hashes: h%(s) ht*1(s) .. h%(s) h(s)

Limitation: Only t authentications are possible

Security: Computing next passwords from the current is equivalent to compute
the preimage of h, which is infeasible (h is one-way)

=> More secure than storing a shared secret “seed” used to generate the OTP

Case study: RSA seed breach

RSA SecurlD Breach (March 2011)

The values of secret “seeds”
were stored insecurely and have
been leaked through phishing

40M of devices replaced, big
companies attacked, huge image
damage for RSA

(= @ £445 051,

Something inherent. Check
biometric features of users

B | om e-trl CS e Signatures, fingerprints, voice,

face, hand geometry, retinal
patterns, iris, ...

Biometrics

1. Enrollment: features are Problem: A breach in the biometric
extracted and stored in database database has high impact:
2. \Verification: features are

extracted and compared with e biometric data is unique, belongs

the stored ones t(? USETS .
e differently from passwords it
A delicate balance: cannot be changed if leaked
No impersonation (false positives) New attacks:

but correct users should be identified
most of the times (no false negative)

https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php
https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php

