
Buffer and Stack Overflow
System Security (CM0625, CM0631) 2023-24
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Buffer overflow is one of the most
common vulnerabilities

● caused by “careless”
programming

● known since 1988 but still
present

Introduction

22

Can be avoided, in principle, by
writing secure code

● non-trivial in “unsafe”
languages, e.g., C

● legacy application/systems
might have overflows

⇒ mitigation mechanisms are
important!

Introduction
Why still there ...

33

Brief history of some famous overflows

1988 The Morris Internet Worm used
a buffer overflow exploit in fingerd

1995 A buffer overflow in httpd 1.3
was discovered and published on the
Bugtraq mailing list

1996 “Smashing the Stack for Fun
and Profit” in Phrack magazine
(a step by step introduction)

2001 Code Red worm exploited a
buffer overflow in Microsoft IIS 5.0

2003 Slammer worm exploited a
buffer overflow in Microsoft SQL
Server 2000

2004 Sasser worm exploited an
overflow in Microsoft Windows
2000/XP, Local Security Authority
Subsystem Service (LSASS).

4

http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html

Definition

A buffer overflow (overrun or overwrite), is defined as follows [NISTIR 7298]:

A condition at an interface under which more input can be placed into a
buffer or data holding area than the capacity allocated, overwriting other
information.

Attackers exploit such a condition to

● crash a system
● insert specially crafted data that break integrity
● insert specially crafted code to gain control of the system

5

https://csrc.nist.gov/publications/detail/nistir/7298/rev-2/final

Consequences

Example: a program storing data
beyond the limits of a fixed-sized
buffer

Buffer can be located

● on the stack
● in the heap
● in the data section

Effects:

● modify other variables
(corruption of data)

● modify the program control flow
data such as return addresses
and pointers to previous stack
frames (corruption of control)

⇒ arbitrary code execution with the
privileges of the attacked process

6

Safe vs. unsafe languages (1)

Assembly is fast but does not
provide any notion of type

👍 full access to resources

👍 high performance

👎data can be interpreted and used
in any way

👎programmer’s responsibility to
enforce safe execution

Languages such as Java, Haskell,
Python are safer

👍 strong notion of types

👍 overflows are not possible

👎usually limited/missing direct
access to resources

👎compile-time and run-time
overhead

7

Safe vs. unsafe languages (2)

C is in between!

Like Assembly:

👍 full access to resources

👍 high performance

⇒ used to develop Unix. Still the
preferred language for low-level
programming (OS, device drivers,
firmware, ...)

Differently from Haskell, Java,
Python, C has weak types

👎low-level, unsafe access to data is
possible

👎programmer’s responsibility to
enforce safe execution in many
cases (e.g. overflows are possible)

👎many unsafe library functions

8

Example: simple overflow

#include<stdio.h>
#include<string.h>

void checkpassword() {
int valid = 0;
char str1[8]; // 7 chars + NULL
char str2[8]; // 7 chars + NULL
strcpy(str1,"pwd1234"); // a secret pwd
printf("Insert password: ");
fflush(stdout);
gets(str2); // reads the user password
// compares 8 chars of str1 and str2
if (strncmp(str1, str2, 8) == 0)

valid = 1; // password is valid
printf("buffer1: str1(%s), str2(%s),

valid(%d)\n", str1, str2, valid);
}

int main(int argc, char *argv[]) {
checkpassword();

}

str1 and str2 are two buffers of 8
bytes (1 byte for NULL termination)

str1 contains, at run-time, the secret
password "pwd1234"

str2 is used to read user input

first 8 bytes of str1 and str2 are
compared and if equal valid is set to
1 (true)

9

./overflow
Insert password: AAAAAAA
buffer1: str1(pwd1234), str2(AAAAAAA), valid(0) Password is wrong

./overflow
Insert password: pwd1234
buffer1: str1(pwd1234), str2(pwd1234), valid(1) Password is correct

./overflow
Insert password: AAAAAAAA (8 chars)
buffer1: str1(), str2(AAAAAAAA), valid(0) 0x00 (NULL) overwrites first byte of str1

./overflow
Insert password: AAAAAAAAAAAAAAA (15 chars)
buffer1: str1(AAAAAAA), str2(AAAAAAAAAAAAAAA), valid(0) 7 A’s and 0x00 overwrite str1

./overflow
Insert password: AAAAAAAAAAAAAAAA (16 chars)
buffer1: str1(AAAAAAAA), str2(AAAAAAAAAAAAAAAA), valid(1) Password is correct! strncmp(str1,str2,8)

Example: simple overflow

10

Unsafe C functions

gcc overflow.c -o overflow
overflow.c: In function 'checkpassword':
overflow.c:17:2: warning: implicit declaration of function 'gets'; did you mean 'getw'?
[-Wimplicit-function-declaration]
 gets(str1); // reads the user password
 ^~~~
 getw

Function gets is unsafe and should never be used (cannot limit user input!)

Note 1: gets has been removed from stdio.h, so compiling gives a warning but
program works anyway (legacy code needs to be supported)

Note 2: strcpy is unsafe too, but it is still in stdio.h (no warning). In this case,
since"pwd1234" fits the 8 bytes we do not get any security warning.

11

Stack overflow

A buffer overflow occurring on the
stack, also known as stack
smashing

Right after the local variables, the
stack contains

● The old frame pointer
● The return address

A stack overflow can overwrite
these control data to run arbitrary
code

1212

Function call

Calling function:

1. push parameters
2. call (pushes the return address)

Called function:

3. push old frame pointer
4. new frame pointer is set where

the stack pointer is
5. stack pointer is decreased so to

allocate local variables
6. parameters are accessed

int f (int x) {
int a = 0;
int b = x;
…

}

Invocation:

f(10);

...

...

new
frame
ptr

stack
ptr

b

a

old
frame
ptr

old
stack
ptr10

10

0

old frame
ptr

ret addr

13

Function return

When f returns, it

1. sets the stack pointer to the old
frame pointer position

2. pops and restores the old frame
pointer

3. return (pops and jumps to the
return address)

⇒ If an overflow overwrites the return
address, the control goes to the
new address (possibly malicious)

int f (int x) {
int a = 0;
int b = x;
…

}

Invocation:

f(10);

...

...

b

a

old
frame
ptr

old
stack
ptr10

10

0

old frame
ptr

ret addr

jump

14

Example: stack overflow

#include<stdio.h>
#include<string.h>

void hiddenfunction() {
printf("This will never be reached!\n");

}

void checkpassword() {
...
// same code as before with overflow
...

}

int main(int argc, char *argv[]) {
checkpassword();

}

Suppose our previous example
program contains a function that is
not even invoked (hiddenfunction)

Assume that hiddenfunction is
located at 0x00005555555551da

(because of little-endianness we will
need to pass the address in reverse
order as bytes 0xda 0x51 0x55 0x55
0x55 0x55 0x00 0x00)

15

./stack
Insert password: AAAAAAAAAAAAAAAAAAA (19 chars)
buffer1: str1(AAAAAAAA), str2(AAAAAAAAAAAAAAAA), valid(1) str2 is 16 chars! valid is overwriting it

./stack
Insert password: AAAAAAAAAAAAAAAAAAAA (20 chars)
buffer1: str1(AAAAAAAA), str2(AAAAAAAAAAAAAAAA), valid(1)
Segmentation fault Segfault!

echo -e 'AAAAAAAAAAAAAAAAAAAA\xda\x51\x55\x55\x55\x55\x00\x00' | ./stack
Insert password: buffer1: str1(AAAAAAAA), str2(AAAAAAAAAAAAAAAA), valid(1)
Segmentation fault Old frame pointer but not return address!

echo -e 'AAAAAAAAAAAAAAAAAAAAAAAAAAAA\xda\x51\x55\x55\x55\x55\x00\x00' | ./stack
Insert password: buffer1: str1(AAAAAAAA), str2(AAAAAAAAAAAAAAAA), valid(1)
This will never be reached!
Segmentation fault Old frame pointer and return address!

Example: stack overflow

16

sprintf(char *str,char *format,...)

create str according to supplied
format and variables ...

vsprintf(char *str, char *format,
va_list vars)

create str according to supplied
format and variables vars

More C unsafe functions

strcat(char *dest, char *src)

append contents of string src to
string dest

strcpy(char *dest, char *src)

copy contents of string src to dest

17

snprintf(char *str, size_t size,
char *format,...)

same as sprintf but writes at most
size chars (including 0x00)

vsnprintf(char *str, size_t size,
char *format, va_list vars)

same as vsprintf but writes at most
size chars (including 0x00)

… and their “safe” counterpart

strncat(char *dest, char *src,
size_t size)

same as strcat but appends at most
size chars (excluding 0x00)
dest size at least: strlen(dest)+size+1

strncpy(char *dest, char *src,
size_t size)

same as above but it does not add
0x00 if src is cut to n!

18

Shellcodes

Definition: small binary program that
executes a shell (or arbitrary code)

● small so to fit the buffer
● position independent
● null byte (0x00) free (in case

overflow is over string
operations)

● library independent

⇒ inject on the stack and return to it

shellcode

shellcode

old frame ptr
(overwritten)

return address
(overwritten)

...

buffer

...

return

19

Return to syscall / libc

Idea: return to existing syscalls or
library functions

● overwrite a “reasonable” old
frame pointer

● write function address over
return address

● write a fake return address
● write function parameters

⇒ function will read parameters
from the stack and execute
(cf. function call slide)

...

old frame ptr
(overwritten)

return address
(&system)

fake return
address

“/bin/sh”

...

buffer

“invokes” system(“/bin/sh”)
20

Replacement stack frame

off-by-one: a subtle overflow of a
single byte (<= instead of <)

● too short to overwrite return
address

IDEA: overwrite a single byte of old
frame pointer

● stack frame is moved to an area
controlled by the attacker so that
next return address is malicious

...

...

...

old frame ptr (1
byte overwritten)

return address

...

buffer

old
stack
ptr

21

Return Oriented Programming (ROP)

Return Oriented Programming (ROP)

Idea: return to fragment of codes
close to return commands (gadgets)

● overwrite return address with a
sequence of gadget addresses

● when function returns it will
activate the first gadget that will
activate the second, and so on...

⇒ malicious code as the
composition of gadgets (e.g.,
starting a shell)

...

old frame ptr
(overwritten)

return address
(&gadget1)

&gadget2

&gadget3

...

buffer xor eax,eax

ret

mov al, 1

ret

...

22

Defences
Compile-time: harden programs to
resist to overflow attacks
(important for new programs)

Run-time: detect and block attacks
on existing programs

2323

Compile-time defences

Use safe programming languages:
use unsafe languages only if strictly
necessary (access to hardware,
extreme performance). Low-level
libraries might be vulnerable though

Safe coding techniques: always
check buffer boundaries, use safe
library functions; graceful failure
when unexpected occurs. (more
detail in next class)

Stack protection: Compiler

● adds extra code to look for stack
corruption. StackGuard uses a
random canary value that is
pushed after old frame pointer
and checked before return

● rearranges variable position so
that buffers are the last ones on
the stack (mitigates overflows)

24

Canary (1)

Requires operating system support

When function starts:

● random canary is copied to the
stack from the process table

Before function returns:

● original canary is compared with
the one of the stack and, if
different, the function aborts

...

...

canary
(overwritten)

old frame ptr
(overwritten)

return address
(overwritten)

...

buffer

canary does
not match
⇒ abort!

25

Canary (2)

Read random canary from the process
mov rax,QWORD PTR fs:0x28

Copy canary on the stack
mov QWORD PTR [rbp-0x8],rax

(function code)

Reads canary from the stack
mov rax,QWORD PTR [rbp-0x8]

Compares with process canary
xor rax,QWORD PTR fs:0x28

If OK go to return else fail
je 0x12b1 <checkpassword+180>
call 0x1060 <__stack_chk_fail@plt>

👍 very effective prevention of
overflows but requires
re-compiling programs

👎void if canary is leaked
(for example due to another
vulnerability)

👎void in case of random access to
the stack (eg. overflowing a buffer
index)

26

Run-time defences

Executable address space
protection: prevent execution of code
in particular segments (e.g. stack,
heap, …). Requires hardware support.

👍 prevents shellcodes

👎does not prevent return to syscall,
libc, ROP

👎some programs need to disable it
(they execute code on the stack)

Address space randomization:
randomize address space in order to
make it harder to discover addresses

👍 make overflow attacks much
harder (what return address??)

👎bypassed if attacker can
brute-force

👎bypassed if addresses are leaked
(e.g. recent side-channels attacks)

27

Run-time defences

Guard pages: memory pages that are
not accessible, placed in between
regular pages

👍 prevents cross-page overflows

👍isolate memory regions

👎cannot prevent an intra-page stack
overflow

Control flow integrity: control
program control flow, preventing
jumps to arbitrary functions

Example: Microsoft Control Flow
Guard (CFG). When a function is
called the system checks if it belongs
to a permitted set.

👎performance issues

👎many bypasses so far
28

