
Identification
Sicurezza (CT0539) 2023-24
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Introduction

Identification is the task of correctly
identifying a user or entity

It is typically required for enforcing
other security properties

Any time the access to a resource
needs to be regulated, some form of
identification is necessary

Examples:

● Users identify into a system
when they login

● Users identify to mobile network
providers through the SIM card

● Users identify to the SIM card
through a PIN

● Users identify to ATMs with
cards and PINs

2

Entity authentication

Identification can be though as
authenticating a user or, more
generally, an entity

● Allow a verifier to check
claimant‘s identity

Example: login-password scheme

● The user claims her identity by
inserting the username

● The system verifies the identity
by asking for a secret password

username: Alice

password: pwd1234

Prove that you
are Alice!

OK password
matches!

3

Impersonation

username: Alice

password: pwd1234

Prove that you
are Alice!

OK password
matches!

An identification scheme should prevent impersonation, even observing
previous identifications

Alice

pwd1234

Prove that you
are Alice!

OK password
matches!

4

Transferability

Alice

pwd1234

The verifier should not reuse a previous identification to impersonate the
claimant with a different verifier, unless authorized

Alice

pwd1234

Prove that you
are Alice!

OK password
matches!

NOTE: The verifier has more information available than an attacker, e.g., when
the communication is encrypted
⇒ Passwords shouldn’t be reused!

5

Classes of identification schemes

Something known. Check the knowledge of a secret

● passwords, passphrases, Personal Identification Numbers (PINs),
cryptographic keys

Something possessed. Check the possession of a device

● ATM cards, credit cards, smartcards, One Time Password (OTP)
generators, USB crypto-tokens, smartphones, …

Something inherent. Check biometric features of users

● Paper signatures, fingerprints, voice and face recognition, retinal patterns
6

Passwords

The identity claimed through the
login information is checked by
asking for a corresponding secret
password

Problem 1: What if the password is
sniffed?

⇒ stolen passwords allow for
impersonation (weak
authentication: secret is exhibited)

Problem 2: What if password is
guessed?

⇒ guessed passwords allow for
impersonation

Problem 3: How are password stored
on the server?

⇒ an attacker getting into the server
might steal all the passwords
(might be reused for other servers)

7

Preventing leakage and guess

Problem 1: What if the password is
sniffed?

Solution: only use password over
encrypted channels

Example 1: passwords and card
numbers sent over https

Example 2: telnet was an insecure
remote terminal client sending
passwords in the clear

Problem 2: What if password is
guessed?

Solution 1: Disable the service after
MAX attempts

Example: lock SIM after 3 attempts

Solution 2: Use strong passwords

⇒ useful in offline attacks when the
service cannot be disabled

8

“Encrypted” passwords

Problem 3: How are password stored on the server?

IDEA: The server stores a one-way hash of passwords

Definition (hash function). A hash function h computes efficiently a fixed length
value h(x)=z called digest, from an x of arbitrary size.

NOTE: Collisions are possible: h(x1) = h(x2)

Definition (one-way hash function). A hash function h is one-way if given a
digest z, it is infeasible to compute a preimage x’ such that h(x’)=z

⇒ Finding a pre-image is computationally infeasible
9

One-way hash function

x1

xn

x2

z

Easy to compute

Hard to invert: computing any of
x1, x2, …, xn is infeasible

h

h

h

Fixed size

Arbitrary size

10

User is asked for login, pwd

The system retrieves the stored hash z
of the password for the given login

The system computes h(pwd) and
checks it is the same as z

⇒ Since h is one-way, in principle, no password can be recovered from its hash z

Verification of hashed passwords

==
?

login hash

... ...

r1x z

... ...

11

One-way hash functions

MD5 (Message-Digest algorithm 5)
produces 128-bit (16-byte) hash

SHA-1 (Secure Hash Algorithm 1)
produces a 160-bit (20-byte) hash

Collision attacks: it is possible to find
collisions in MD5 and SHA-1: finding
x1 and x2 such that h(x1) = h(x2)

⇒ No efficient attack to compute a
valid preimage (still one-way!)

SHA-2 (Secure Hash Algorithm 2)
produces 224, 256, 384 or 512 bits
hashes (28, 32, 48, 64 bytes)

SHA-3 (Secure Hash Algorithm 3) is
the result of a NIST competition to
establish the new cryptographic hash
function standard

SHA-2 is the most used one, no
reason to switch to SHA-3 yet ...

12

Examples

$ echo -n "mypassword" | md5sum
34819d7beeabb9260a5c854bc85b3e44 -

$ echo -n "mypassword" | sha1sum
91dfd9ddb4198affc5c194cd8ce6d338fde470e2 -

$ echo -n "mypassword" | sha224sum
9b1cdbab8c8410d63ca8700b12d03b9f0bf93d33b793653cc0983ef3 -

$ echo -n "mypassword" | sha256sum
89e01536ac207279409d4de1e5253e01f4a1769e696db0d6062ca9b8f56767c8 -

$ echo -n "mypassword" | sha384sum
95b2d3b2ad7c2759bf3daa53424e2a472bc932798dae30b982621833a449492883b7ae9d31d30d32372f98abdbb256ae -

$ echo -n "mypassword" | sha512sum
a336f671080fbf4f2a230f313560ddf0d0c12dfcf1741e49e8722a234673037dc493caa8d291d8025f71089d63cea809cc8
ae53e5b17054806837dbe4099c4ca -

Dash ‘-’ stands for stdin (see next slide)

13

File integrity (never use MD5 and SHA-1)

$ sha256sum Assembly/*
23b21ab11641c6bfc3ec3599bcc85a61414fa9b8316002112ff164231efc0fea Assembly/checkPassword
6ad802b2b45b229abffdf1433df949b526db07b10543b0bd38c56deb65d34820 Assembly/count
034e1535a391e2a3cdf404fc144e124af457155a5a3d2782b122c5d1dae8be2a Assembly/count.c
$ sha256sum Assembly/* > checksum

$ sha256sum -c checksum
Assembly/checkPassword: OK
Assembly/count: OK
Assembly/count.c: OK

$ nano Assembly/count.c

$ sha256sum -c checksum
Assembly/checkPassword: OK
Assembly/count: OK
Assembly/count.c: FAILED
sha256sum: WARNING: 1 computed checksum did NOT match

Digest are computed and stored in checksum

Hashes are recomputed and compared with
the ones in file checksum

Any modification is detected! Note that for
MD5 and SHA-1 it is possible to find collisions
so NEVER use them for file integrity!

14

Offline attacks

Attacker model: we assume the
attacker has access to the password
file and tries to recover passwords
from their hashes

⇒ offline attack!

One-way hashes protect passwords
stored on the server, but ...

Problem 2: What if password is
guessed?

Solution 1 was: disable the service
after MAX attempts

The attacker has the password file
and can try to hash any password of
her choice!

⇒ useless for offline attacks!

Solution 2: use strong passwords

⇒ protects from offline attacks

15

Dictionary attacks

Brute force: even if one-way hashes
cannot be inverted, an attacker can
try to compute hashes of easy
passwords and see if the hashes
match

Note: It is possible to precompute the
hashes of a dictionary and just
search for z into it

Example:

$ echo -n "mypassword" | sha256sum
89e01536ac207279409d4de1e5253e01f4a
1769e696db0d6062ca9b8f56767c8 -

Password "mypassword" is clearly
weak, we can search for the hash
directly in search engines or using
existing online services

16

https://md5decrypt.net/en/Sha256/

Salting passwords

Precomputation of password hashes is prevented by adding a random salt,
different for each user, which is stored together with the hashes

login hash salt

...

r1x z s

...

17

User is asked for login, pwd

The system retrieves the stored hash z
of the password for the given login

The system retrieves the stored salt s

The system computes h(pwd,s) and
checks it is the same as z

The salt s is different for each user and is stored in the password file
⇒ Precomputing hashes for each possible salt would require too much space

Verification of “salted” passwords

==
?

login hash salt

...

r1x z s

...

18

Example

$ echo -n "mypassword54otdf84" | sha256sum
3181527671d5dd6b3c1a990ed7b47f3afd69bdfa7794757451639f2b4aa7d65e

Password "mypassword" is clearly weak

We add “random” salt "54otdf84"

Searching for the hash directly in search engines or using existing online
services will fail!

⇒ since salt is stored in the file, an attacker can still bruteforce easy
passwords computing, on-the-fly, the hashes (slower but feasible!)

19

https://md5decrypt.net/en/Sha256/
https://md5decrypt.net/en/Sha256/

“Slow” hashes

Instead of using a single hash, hashes are usually iterated so to slow down
brute-force

Example: Linux passwords

goofy:6Lc5mF7Mm$03IT.AXVhC3Vl4/rLAdomffgv5feOlKBzNGtpEei
2dBgK9z/4QBqM3ZMRK4qcbbYJhkAE.2KscEZx0Am/y50:

● 6: SHA512-based hashing, iterated 5000 times, by default
● Lc5mF7Mm: salt
● 03IT.AXVhC3...Zx0Am/y50: digest

20

Example ctd.

Linux passwords in python:

>>> import crypt
>>> crypt.crypt("donald","6Lc5mF7Mm$")
'6Lc5mF7Mm$03IT.AXVhC3Vl4/rLAdomffgv5feOlKBzNGtpEei2dBgK9z8B/4QB
qM3ZMRK4qcbbYJhkAE.2KscEZx0Am/y50'

Command line tool (provided by whois package in ubuntu):

$ mkpasswd donald -m sha-512 -S Lc5mF7Mm
6Lc5mF7Mm$03IT.AXVhC3Vl4/rLAdomffgv5feOlKBzNGtpEei2dBgK9z8B/4QBq
M3ZMRK4qcbbYJhkAE.2KscEZx0Am/y50

21

$ time mkpasswd donald -m sha-512 -S Lc5mF7Mm -R 5000000
6rounds=5000000$Lc5mF7Mm$FWm/GeTLTryHa0Nt/WfrbLqjVOsipSBNP3IUgwbNP7H95eR8
lhKj.6Pc7YcznupXjHXA9QBirkmmaxh3oqt4v.

real 0m1.926s
user 0m1.925s
sys 0m0.001s

Increasing the iterations

$ time mkpasswd donald -m sha-512 -S Lc5mF7Mm
6Lc5mF7Mm$03IT.AXVhC3Vl4/rLAdomffgv5feOlKBzNGtpEei2dBgK9z8B/4QBqM3ZMRK4qc
bbYJhkAE.2KscEZx0Am/y50
real 0m0.005s
user 0m0.003s
sys 0m0.002s

Default number of iterations is 5000

We raise the number of iterations to
5000000

22

Salt examples

Up to 16 random chars from [a-zA-Z0-9./]

$ mkpasswd donald -m sha-512
6XGX3asxc$srRtplHNT0Itr44D/xyYbxBNQoPPsYYb6gVNxP372PL0hw9Toit9DQ
KVMtg9/I9DR9UGaZF1sCclcYRscJgDm1

$ mkpasswd donald -m sha-512
6zLm12FS6w/Dr$LBUDF9J.uneghlepBGi.OGrWJ9NCdzro5O.j8iq3gJQLt7A2mj
WavWYw7PkISKYHdy63pVI9zLDmkXU2L2Vex.

$ mkpasswd donald -m sha-512
6uTOR38Mo16$PLjldovzZAuu6eRVZtbL2HwUeB.VIQ.hQiwhmxmnggDy5EZZufKK
CjrMbXS3rM.2S6oKWK.aEoVFtAFsPJaPP0

23

NIST SP 800-63-2 suggests the
following alternative rules:

● Password must have at least
sixteen characters (basic16)

● Password must have at least
eight characters including an
uppercase and lowercase letter,
a symbol, and a digit. It may not
contain a dictionary word
(comprehensive8)

xkcd.com

Password policies

24

Passphrase of N words picked at random from a fixed list, by rolling 5 dice

● 5 dice gives 65 = 7776 possible words
● Entropy for each word is log27776 ~ 12.9 bits

The whole entropy is thus 12.9 N

● for N=4 entropy is ~52 bits
● for N=5 entropy is ~64 bits
● for N=6 entropy is ~77 bits

Word list: http://world.std.com/~reinhold/dicewarewordlist.pdf

Diceware

25

http://world.std.com/~reinhold/dicewarewordlist.pdf

Something possessed. Check the
possession of a device

● ATM cards, credit cards,
smartcards, One Time
Password (OTP) generators,
USB crypto-tokens

Token-based
authentication

26

Memory cards

Passive card with a memory

Examples:

● Old ATM cards with magnetic
stripe

● Hotel cards to open doors

When paired with a PIN the attacker
needs to steal/duplicate both

Problems:

● Passive cards are usually simple
to clone

Example:

● Old ATM cards were cloned by
putting a fake reader and a
camera (to also steal the PIN)

27

Smart cards

Smart token with embedded chip

Various devices:

● Standard smartcard
● USB token
● Small portable objects
● Bigger objects with display

and/or keyboard

⇒ One time passwords (OTPs) and
Challenge-response

28

Something inherent. Check
biometric features of users

● Signatures, fingerprints, voice,
face, hand geometry, retinal
patterns, iris, ...

Biometrics

29

Biometrics

1. Enrollment: features are
extracted and stored in database

2. Verification: features are
extracted and compared with the
stored ones

A delicate balance:

No impersonation (false positives) but
correct user should be identified most
of the times (no false negatives)

Problems:

A breach in the biometric database
has high impact:

● biometric data is unique, belongs
to users

● differently from passwords it
cannot be changed if leaked

New attacks: adversarial machine
learning

30

https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php
https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php

