
Client side web security
Sicurezza (CT0539) 2023-24
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Web (in)security

Web applications are complex and
offer an incredibly wide attack
surface

● attacks directly targeting the
server-side code or databases
(see previous classes)

● attacks running in the browser
● attacks on the network

2

Web sessions

Web applications usually have a state

Example:

1. user logs into a web application
2. a session is started (state

changes)
3. user gets access to her data and

resources (authorization)
4. web pages are customized

based on the user

When the user browses to different
web application pages, the session
needs to be preserved

⇒ The user shouldn’t log in again!

The session needs to be represented
in the browser:

● a session token that works as a
“session password”

3

Session token

The session token can be stored in
various ways:

Browser cookie: it is automatically
attached to any subsequent request
to the server

URL parameter: in links to pages

Hidden form field: sent when forms
are submitted

Note: if a session token is guessed or
leaked, the session can be hijacked,
and the user impersonated

⇒ token should be unguessable and
kept confidential

Cookie theft is a typical web attack
that can be used to hijack a session

4

Which token?

URL parameters are exposed in logs
and referrers

⇒ bad for security!

Hidden form fields are only visible
when forms are submitted

⇒ bad for usability: web session
should be represented in any web
page, not just forms

⇒ The standard approach is to use a
browser session cookie

It is automatically attached to any
request and form submission

Note: combining different tokens may
offer resistance to session integrity
attacks, e.g. CSRF as we will see in
next class

5

Cookies and cookie policy

A cookies is set using the HTTP
header Set-cookie with the
following fields:

NAME = VALUE;
domain = (es .unive.it)
path = (es /teaching)
expires = (when expires)
secure = (boolean flag)
HttpOnly = (boolean flag)

The browser automatically attaches
to a web request cookies such that:

● domain is a suffix of the URL
domain

● path is a prefix of URL path
● protocol is HTTPS if cookie is

flagged secure

The Set-cookie header can occur
multiple times to set more cookies

6

● /teaching is prefix of /teaching/security-course

Example

A cookie with

● domain .unive.it
● path /teaching

will be attached to a GET request to URL
https://secgroup.dais.unive.it/teaching/security-course

● .unive.it is a suffix of secgroup.dais.unive.it

7

Example: cookie creation

> document.cookie
""

> document.cookie = "username=test; path=/search"
"username=test; path=/search"

> document.cookie = "username=test1; path=/"
"username=test1; path=/"

> document.cookie
"username=test; username=test1"

Example: creation of two cookies with the same name and different paths from
the browser javascript console (URL with path=/search, Try it in incognito!)

domain and path are
set, by default, to the host

and path in the URL

8

https://secgroup.dais.unive.it/search/

Example: cookie deletion

> document.cookie = "username=; expires=Thu, 01 Jan 1970 00:00:00 UTC"
"username=; expires=Thu, 01 Jan 1970 00:00:00 UTC"

> document.cookie
"username=test1"

> document.cookie = "username=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/"
"username=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/"

> document.cookie
""

Deletion by setting a date in the past
Each cookie is deleted separately by the path. When not specified the current
one is applied (e.g. /search)

9

Two cookies with the same name … really?

If paths are not disjoint they are both
sent to the server

Which one will be used?

In a 2015 paper [ZJL15] authors
show that equal cookies are treated
differently depending on the
language, framework and library

⇒ not good for security!

Java, JavaScript and Go read cookies
as a list

PHP, Python, ASP, ASP.NET, Node.js,
JQuery, … only provide a dictionary
(only one of the two cookies, which
one? Language-dependent!)

Note: only name and value are sent.
The server cannot discriminate based
on the path!

10

https://www.usenix.org/node/190991

Cookie flags
NAME = VALUE
domain = (es .unive.it)
path = (es /teaching)
expires = (when expires)
secure = (boolean flag)
HttpOnly = (boolean flag)

11

Secure cookies and mixed content

HTTPS requires more resources than
HTTP because of cryptography

Web applications sometimes have
mixed HTTP/HTTPS content

⇒ this can expose session cookies!

Even if the login is HTTPS, any
access to HTTP pages might send
the session cookie in the clear

The secure flag prevents that the
flagged cookie is sent over HTTP
connections

IDEA: set two session cookies, a
secure and a non-secure one for
HTTPS and HTTP pages

⇒ The attacker can only hijack the
HTTP, non-sensitive part

12

What about cookie integrity?

The secure flag was not designed for
integrity

● In older browsers secure cookies
could be set even over HTTP

A network attacker might set a
secure cookie of her choice by
mounting a Man-In-The-Middle
(MITM) attack

Is this problematic for security?

⇒ User’s data are leaked to the
attacker’s account when
submitted to the web application!

In recent browsers secure cookies
can only be set over HTTPS

⇒ Attacker cannot overwrite existing
secure cookies from HTTP

13

Session fixation attack

Is this enough?

1. Attacker sets a (non secure)
cookie value into a victim’s
browser (e.g. through a MITM
over HTTP)

2. The user authenticates

3. Attacker’s cookie is “promoted”
to session cookie

⇒ the attacker hijacks the session
(cookie is known!)

Realistic! It is often the case that
cookies are set before authentication
in a so-called pre-session

Solution: in case session is started
before authentication, always refresh
the token when user authenticates

14

Cookie flags
NAME = VALUE
domain = (es .unive.it)
path = (es /teaching)
expires = (when expires)
secure = (boolean flag)
HttpOnly = (boolean flag)

15

HttpOnly cookies

Web pages execute JavaScript code
in the browser

JavaScript can get and set cookies

A malicious JavaScript injected into a
page might leak cookies (Cross Site
Scripting, XSS, next class)

⇒ An attack in a single page would
compromise the whole session

The HttpOnly flag prevents that
JavaScript accesses the flagged
cookie

⇒ Prevent cookie leaks by malicious
JavaScript code

Session cookies should always be
flagged as HttpOnly

HttpOnly cookies are sent to the
server but are invisible to JavaScript

16

Stateful vs. stateless server

The session state can be either
stored in the server or in the client
(or a mix of the two)

Stateful server: have a Secure and
HttpOnly session cookie in the
browser and all the state information
on the server

⇒ Can produce excessive server side
overhead

Stateless server:

1. encrypt the session data
together with a user ID and a
timestamp using a server key

2. store the encrypted blob in a
cookie in the browser

3. the server stores the time the
user logged-in or out so to check
the validity of the encrypted blob

17

The Same Origin Policy

18

Same Origin Policy (SOP)

Browsers access many different
applications at the same time

Same Origin Policy (SOP) is a
standard browser policy that restricts
access among documents or scripts
loaded from different domains

It provides a simple but necessary
isolation between web applications
running in the same browser

Example: Alice is browsing her home
banking web app B and opens a web
site E that sends requests towards B

⇒ The cookie is attached and E
exfiltrates sensitive data from B!

Without SOP, a malicious site would
hijack any other open session!

(see, e.g., mozilla page on SOP)

19

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

SOP prevents cross-site leakage

Window 1: Bank

Window 1: Evil

sessionCookie

malicious Page

sessionCookie

Blocked by SOP!

Bank

Evil

Browser

20

Origin

Two pages have the same origin if the protocol, port, and host are the same for
both pages

Example: http://store.company.com/dir/page.html

http://store.company.com/dir2/other.html
http://store.company.com/dir/in/pag.html
https://store.company.com/secure.html
http://store.company.com:81/dir/etc.html
http://news.company.com/dir/other.html

OK
OK

21

NO different protocol
NO different port
NO different host

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

Scope of SOP

SOP affects:

● Network access
● Script APIs
● Data storage
● Cookies

If cross-origin, access is restricted
or forbidden

22

SOP network access

Cross-origin writes are typically
allowed

Example: following a link, redirection
and submitting a form

The reached page is different from
the originating one (no risk of leaking
information to the originating page)

⇒ SOP protect confidentiality and
not integrity!

Cross-origin embedding is typically
allowed

Examples: images, CSS and
JavaScript

Cross-origin reads are typically not
allowed

Example: responses to cross-origin
AJAX requests

23

Example: AJAX

var xmlHttp = new XMLHttpRequest();
xmlHttp.open("GET", "https://www.google.it");
xmlHttp.send(null);

Access to XMLHttpRequest at 'https://www.google.it/' from origin
'https://www.unive.it' has been blocked by CORS policy: No
'Access-Control-Allow-Origin' header is present on the requested
resource.

Note: request is sent, response is rejected!

24

SOP prevents cross-site leakage

Window 1: Bank

Window 1: Evil

sessionCookie

malicious Page

sessionCookie

Blocked by SOP!

Bank

Evil

Browser

25

Script APIs

Some JavaScript APIs allow
documents to reference each other

When two documents do not have
the same origin, only a limited access
is provided

Example 1: window.document gives
access to the whole document of a
window. Cross-origin access is
forbidden

Example 2: location.href is the
entire URL which might contain
sensitive data. Cross-origin access is
forbidden

This restriction can be relaxed by
changing document.domain

⇒ useful when web pages
belonging to different
subdomains need to
communicate

26

SOP prevents cross-site leakage

Window 1: Bank

Window 1: Evil

sessionCookie

malicious Page

sessionCookie

Blocked by SOP!

Bank

Evil

Browser

Blocked
by SOP!

27

Changing origin

The origin can be set to the current domain or to a superdomain (a suffix) of
the current domain (not a top-level domain)

⇒ useful when SOP blocks API access in the same web application

> document.domain
"www.unive.it"

> document.domain = "unive.it"
"unive.it"

> document.domain = "www.unive.it"
"www.unive.it"

28

Changing origin (ctd.)

> document.domain = "idp.unive.it"
VM777:1 Uncaught DOMException: Failed to set the 'domain' property
on 'Document': 'idp.unive.it' is not a suffix of 'unive.it'.

> document.domain = "it"
VM792:1 Uncaught DOMException: Failed to set the 'domain' property
on 'Document': 'it' is a top-level domain.

NOTE: deprecated in chrome as it relaxes SOP too much.

29

Storage and cookies

Storage is separated by origin: each
origin has its own storage

We defined origin as the triplet

protocol,host,port

Examples: Web Storage and
IndexedDB

For cookies, protocol is optional and
the path is considered instead of the
port. The origin for a cookie is

[protocol],host,path

NOTE: the restriction on path is for
performance and not for security

Using it for security can be risky as
SOP does not prevent pages under
different paths to access each other

30

https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

SOP for reading/writing cookies

We have already seen that browser
sends cookies such that:

● cookie domain is a suffix of the
URL domain

● cookie path is a prefix of URL
path

● protocol is HTTPS if cookie is
flagged secure

domain can be set to any suffix of
URL-hostname except top-level
domains

For example, .unive.it will specify
a cookie that applies to any
subdomain of unive.it

path can be set to any prefix of the
current path

31

