
Introduction and Unix shell
Sicurezza (CT0539) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/sicurezza/

Course Overview

Objectives
Sicurezza (CT0539)

https://www.unive.it/data/course/379679/programma

This course aims at providing:

● knowledge of attack and
defence techniques related to
program exploitation, system,
network and web security

● skills related to securing real
systems and networks,
developed through practical
exercises

https://www.unive.it/data/course/379679/programma

1. Background and tools

2. Program analysis

3. Program exploitation

4. System and network security

5. Web security (server side)

6. Web security (client side)

Programme
Sicurezza (CT0539)

https://www.unive.it/data/course/379679/programma

https://www.unive.it/data/course/379679/programma

● Course official website (with
slides and on-line material):

https://moodle.unive.it/course/
view.php?id=18824

● The course is mainly based on
on-line material
For program exploitation you
can refer to J. Erickson,
Hacking, the art of exploitation,
No starch press, 2008

Material
Sicurezza (CT0539)

https://www.unive.it/data/course/379679/programma

https://moodle.unive.it/course/view.php?id=18824
https://moodle.unive.it/course/view.php?id=18824
https://www.unive.it/data/course/379679/programma

Written test (base mark)

Non-mandatory assignments (extra
score)

● Challenges on attacking and
securing IT systems and
networks

● Bonus score with respect to the
the mark of the written test

Assessment
Sicurezza (CT0539)

https://www.unive.it/data/course/379679/programma

https://www.unive.it/data/course/379679/programma

Course is based on many practical
examples and exercises

We will provide docker containers
that can be run under Linux,
Windows, Mac

Identical “testbeds” independently
of the host operating system

● either install docker
● or use Linux VM with docker

Lab
Sicurezza (CT0539)

https://www.unive.it/data/course/379679/programma

https://secgroup.dais.unive.it/teaching/sicurezza/testbed/
https://docs.docker.com/install/
https://secgroup.dais.unive.it/teaching/vm-with-docker/
https://www.unive.it/data/course/379679/programma

Background
and tools

1. Unix shell

2. sed and regular expressions

3. Python

Unix shell

Unix shell allows for quickly
automating interaction with
processes and data

Knowing the shell helps
understanding interaction with
programs (processes)

We revise basic Unix shell commands
and concepts

Unix shell is the simplest interface to
the operating systems

● Execute programs
● Redirect input/output
● Connect programs together
● Run scripts

We focus on bash (Bourne-again
shell, pronounced born-again),
successor of Bourne’s shell sh

Basic commands (1)

ls: shows the content of current
directory. -l displays long format; -a
displays hidden (dot) files

file filename: shows the type of
file named filename

pwd: (print working directory) shows
the path of current working directory

mkdir name: creates a new
directory in the current working one

cd path: (change directory) moves
working directory to path

cat file: shows file content

cat f1 f2 f3: displays the
concatenation of f1 f2 f3

echo "hello": prints “hello”

grep word file: looks for word in
file and prints lines that contain it

Basic commands (2)

man command: shows command man
page. Arrows up and down navigate,
q exits, / searches (n next hit, N
previous hit)

find path expression: looks for
files in path (recursively) matching
the specified expression

Ex. : find / -name "*.c" -print
prints all the file that ends with .c

sort file: sort lines of a text file

strings file: find printable
strings in a (binary) file

Example:

$ strings /usr/bin/passwd | grep changed

password for '%s' changed by '%s'
%s: password expiry information changed.
passwd: password unchanged

$

Wildcards

* : Matches any string, including the
null string

? : Matches any single character

[…] : Matches any one of the enclosed
characters; a pair of characters
separated by a hyphen denotes a
range expression

$ ls test[0-9].???
test1.txt test2.txt

NOTE: ‘.’ at the start of a filename or
immediately following a slash must
be matched explicitly, unless the shell
option dotglob is set

$ ls *bash*
ls: cannot access '*bash*' ...
$ ls .bash*
.bash_logout .bashrc
$ shopt -s dotglob
$ ls *bash*
.bash_logout .bashrc

Input from terminal

A typical behaviour of Unix shell
commands is to take input from the
user when no file is specified

ctrl-D is interpreted as End-of-File
(EOF) and terminates the program

Example 1:
$ cat
Hello this is a test
Hello this is a test
(ctrl-D terminates)
$

Example 2 (grep):

$ grep work
I'm checking what happens when
grep is run without specifying
a filename!
How does this work?
How does this work?
ah: matching line are printed
out as expected!
(ctrl-D terminates)
$

Redirection

Fundamental Unix shell mechanism
to redirect program input and output
from/to a file

When output is redirected to a file
(symbol >) any output from the
program will be written to the file

When input is redirected from a file
(symbol <) the content of the file will
be sent as input to the program

Examples:

ls > tmpfile: write the content of
the current folder into file tmpfile.
Check with cat tmpfile

grep shell < tmpfile: redirects
the content of the file to the grep
command.
NOTE: The behaviour is the same as
grep shell tmpfile

Redirection (examples, see also here)

With symbol >> we can append
output to an existing file:

date >> tmpfile: appends current
date to file tmpfile

Note: overwriting is done silently so
be careful when using redirection
with a single >

date > tmpfile: overwrites!

What happens if we redirect the
output of a command that takes input
from the terminal?

Example (cat):

$ cat > test.txt
Hello this is a test
of two lines
(ctrl-D)
$

⇒ input is written into file test.txt!

https://asciinema.org/a/102151?speed=2

Redirecting stdout or stderr

In Unix there are three separate
input/output streams:

● stdin (0): standard input,
where the program takes input

● stdout (1): standard output,
the normal program output

● stderr (2): standard error,
where the program prints error

1> and 2> respectively redirect stdout
and stderr

Example (hide errors):

$ ls
test1.txt test2.txt
$ cat test*
cat: test1.txt: Permission denied
This is readable
$ cat test* 2> /dev/null
This is readable
$ cat test* 1> /dev/null
cat: test1.txt: Permission denied

Pipes

Fundamental mechanism for process
communication in Unix

Similar to redirection but works
between two programs

Channel between processes: a
process can write to the pipe and
another one can read from it

⇒ combine commands conveniently

In the Unix Shell, pipes are specified
using symbol |

cmd1 | cmd2 | ... | cmdn,
executes all commands and the
output of each command i is given as
input to the next command i+1

The output of the last command is
printed on the terminal

Pipes (examples, see also here)

ls | grep shell: shows all file
names that contain word shell

ls | grep shell | sort -r: as
before but file names are sorted in
reverse alphabetical order (option -r).
Notice that in this case we have three
programs cooperating together;

ls | grep shell | grep txt:
shows all file names that contain
both shell and txt

Example:

$ ls
myshell.pdf shell.txt test.txt

$ ls | grep shell
myshell.pdf
shell.txt

$ ls | grep shell | sort -r
shell.txt
myshell.pdf

$ ls | grep shell | grep txt
shell.txt

https://asciinema.org/a/102167?speed=2

The Bandit wargame

Now you can refine your shell skills
solving levels (up to 9) of Bandit wargame:

https://overthewire.org/wargames/bandit/

https://overthewire.org/wargames/bandit/

