
Malware (2)
System Security (CM0625, CM0631) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Brief history of worm attacks (2)

Sobig.F (2003): exploited proxy
servers to turn them into spam
engines

● > 1M hosts of in 24 hours

Mydoom (2004): mass-mailing
e-mail worm

● replicated ~1000 times/minute
● 100M infected messages in 36h
● exploited IE to install a backdoor

Samy (2005): the first Web worm,
onto MySpace (details here)

Conficker (2008): one of the largest
worm infection ever

● exploited vulnerabilities in
Windows systems

● millions of computers including
government, business and home
computers >190 countries

https://samy.pl/myspace/

Brief history of worm attacks (3)

Stuxnet (2010): targeting Industrial
Control Systems (ICS)

● exploiting 0-day vulnerabilities
● first Cyberwarfare weapon ever
● targeting the Iranian nuclear

program

⇒ Worm induced stealthy failures
on the centrifuges for uranium
enrichment

Flame (2012): Cyber-espionage on
Middle-Eastern countries exploiting
advanced vulnerabilities

● MD5 collisions using a new
attack! (see the paper)

WannaCry (2017): vulnerability in the
SMB file sharing of Windows

● encrypting files and asking for a
ransom

https://www.iacr.org/archive/asiacrypt2015/94520251/94520251.pdf

Worm “technologies”

Multiplatform: OSs, Web, …

Multi-exploit: use different exploits to
spread

Ultrafast spreading: try to spread
fast, thanks to multi-exploitation and
0-days

Polymorphic: as viruses, various
forms to evade detection

Metamorphic: as viruses, change
form and behaviour

Transport vehicles: used to transport
other malware

0-day: use unknown vulnerabilities,
which makes it hard to stop/detect
them

Client-side vulnerabilities (1)

Bugs in user applications that allow
malware to install

Drive-by download: user visits a page
that downloads and install malware
without user knowledge

● Typically due to browser and
plugin vulnerabilities

● Examples: Flash and Java plugin
vulnerabilities

Watering-hole attack: is a variant of
drive-by download. The attacker:

● targets a specific victim
● discovers websites commonly

visited by the victim and look for
vulnerabilities

● exploit website vulnerabilities so
to install the drive-by download
payload

Client-side vulnerabilities (2)

Malvertising: attacker pays for
advertisements that incorporate
malware

● users visiting pages with
malvertising would get infected
(e.g. through drive-by download)

Clickjacking: hijack user clicks

● User clicks on a button but the
click goes to a different page

Example: transparent layers that hide
what the user is really clicking on

● Click would go to the transparent
page, possibly performing
unwanted actions (user might be
logged in a session)

Propagation
mechanisms 1. Infection

2. Exploitation
3. Social engineering

(malware classification)

Social engineering

Definition: “tricking” users to assist in the
compromise of their own systems or personal
information

Examples:

● a user views and responds to a spam e-mail
● a user permits the installation and execution

of a Trojan horse program

Spam and phishing

Spam emails can carry malware:

● attached document, which, if
opened, may exploit a software
vulnerability to install malware

Phishing attacks

● a fake website that attempts to
capture user’s credentials

● forms with personal details to
allow user impersonation

Phishing over HTTPS: fake websites
have valid HTTPS certificates, thanks
to free CAs such as Let’s Encrypt

● HTTPS may create a false sense
of security

Phishing over social networks: spam
email phenomenon is reducing
thanks to filters, but social media
offer a new vehicle for social
engineering attacks

https://letsencrypt.org

Trojan horses

Trojan horse: a useful, or apparently
useful, program containing hidden
code that, when invoked, performs
some unwanted or harmful function

● Example: incorporate malicious
code into a game and making it
available via a known app store

Categories of Trojans

1. Continuing to perform the original function and additionally
performing a separate malicious activity

2. Continuing to perform the original function but modifying it so
to perform malicious activity or to disguise other malicious
activity. For example:
a. a Trojan horse version of a login program collecting passwords
b. a Trojan horse version of ls not displaying malicious programs

3. Performing a malicious function that completely replaces the
original one

Note: some Trojans exploit vulnerabilities to install but, unlike
worms, they do not replicate

Payload action
1. corruption of system / data
2. theft of a service
3. theft of information
4. stealthing(malware classification)

Botnets

Bot (zombie): device whose
computational and network
resources have been subverted for
use by the attacker

Botnet: a collection of bots that can
act in a coordinate manner

● thousands of computers,
servers, embedded devices (IoT),
...

Botnet activities

Distributed DoS (DDos): flooding the
target

Spamming: massive amount of bulk
emails

Sniffing traffic (infected hosts):
retrieving sensitive information

Keylogging (infected hosts): useful
when traffic is encrypted

Spreading malware: botnet as the
start base for viruses or worms

Automated tasks: get financial
advantage (e.g. clicking on ads)

Manipulating polls and on-line
games: votes and activities from
thousand of different IPs will appear
as from distinct users

Botnet Command & Control (C&C)

C&C control servers are contacted by
zombies in the botnet

Fixed address: easy to take over by
law enforcement agencies

Pool of addresses generated
automatically: if server is down bot
contacts the next address
⇒ Much harder to detect

C&C servers:

● issue commands to bots
● send updates
● gather sensitive information

collected by bots

Note: A significant number of C&C
have been taken over and shut down
in the recent years

Payload action
1. corruption of system / data
2. theft of a service
3. theft of information
4. stealthing(malware classification)

Rootkits

Rootkit: a set of programs installed
on a system to maintain covert
access to that system with
administrator privileges, while hiding
evidence of its presence

● Persistent: easier to detect as it
needs to be stored, or

● Memory based: harder to detect
but does not survive reboots

User mode: Intercepts APIs and
modifies results. Example: hide
rootkit file in ls

Kernel mode: privileged mode, hides
processes, modifies kernel memory

Virtual machine based: runs the OS in
a lightweight virtual machine

External mode: direct access to
hardware (BIOS, UEFI, Intel SMM, ...)

Kernel mode rootkits

Change syscalls:

1. Modify the system call table:
The attacker modifies entries so
to point to the rootkit’s functions

2. Modify system call table targets:
The attacker overwrites selected
legitimate system call routines

3. Redirect the system call table:
The attacker redirects references
to a new table in kernel memory

The idea is to exploit a “layer-below”
form of attack:

● Any “anti-virus” program would
now be subject to the same
“low- level” modifications that
the rootkit uses to hide its
presence

⇒ Detecting the rootkit becomes
really hard!

Countermeasures

Prevention:

● Appropriate access control
(possibly MAC) so to limit virus
propagation and damage

● Keep systems up-to-date:
reduce vulnerabilities limiting
worm propagation

● Improve user awareness so to
limit social engineering attacks

Mitigation, when prevention fails:

● Detection: malware should be
promptly detected and located

● Identification: once detected,
identify the specific malware

● Removal: once identified, remove
all traces of malware

Note: when identification or removal
are not possible it is necessary to
restore a backup or reinstall system

Sandbox analysis

Run malware in an emulated sandbox
so to study its behaviour and develop
adequate mitigation strategies

Problem 1: How long should the
analysis run?

● modern malware extensively
sleep to evade sandbox analysis

Problem 2: Is it possible to make
sandbox indistinguishable from real
setting?

● modern malware tries to detect if
it is running in a sandbox and, in
such a case, it deactivates

Example: network connections are
emulated to prevent that malware
easily notices isolation.
Read how this killed WannaCry!

https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/

