
Secure Coding
Sicurezza (CT0539) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Motivation

Programming languages can be
unsafe, especially when they allow
for low-level access to memory

Languages such as C are
particularly unsafe and require great
attention from programmers but
any programming language exhibits
unsafe behaviours

We discuss how to write safe and
secure programs in C

Standards

ISO/IEC TS 17961: establishes
baseline requirements for analyzers
and compilers

All requirements can be enforced by
static analysis (compile time)

⇒ Discover coding errors without too
many false positives

Has been applied in non-uniform,
ad-hoc manners by different vendors

The SEI CERT C Coding Standard
provides rules and recommendation
from the security coding community

● Rules provide normative
requirements for code

● Recommendations provide
guidance to improve code safety,
reliability, and security

⇒ Freely available!

https://www.iso.org/standard/61134.html
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Tools and incompleteness

Manual inspection of code is only
possible for small programs

Static analysis tools are necessary
for real-world applications

Properties that depend control-flow
are in general undecidable, so static
analysis tools cannot be 100%
precise (cf. halting theorem)

False negative: failure to report a flaw

False positive: report nonexisting flaw

What is preferable?

False negatives should be avoided
(insecure code). Tools try to err on the
safe side giving false positives

⇒ however, too many false positives
make programming hard!

Sound / Complete analysis

False Positives

No Yes

False Negatives

No Sound and
Complete

Sound with False
Positives

Yes Complete with
False Negatives

Unsound and
incomplete

Sound: bad programs are all
rejected, i.e., no false negatives
(good programs might be rejected)

Complete: no good program is
rejected, i.e., no false positives
(bad programs might be accepted)

Goal: sound and complete
for simple, syntactic rules.
Otherwise, sound minimizing
false positives

Taint analysis

Determines which values coming
from program inputs can influence
values used in a risky operation

Tainted source: Any source of
external data that could be controlled
by an attacker

Tainted value: Value derived or
computed from a tanited source and
has not been properly sanitized

Restricted sink: An argument of a
function that is required to be in a
restricted domain

Many library functions in C have
restricted sinks

Example: strings are usually required
to be NULL terminated. If not the
function will access subsequent
memory

Taint propagation

Taint is propagated through
operations from operands to results
unless the operation itself imposes
constraints on the value of its result

Examples:

strcpy(s1,s2): copies s2 in s1

strcat(s1,s2): appends s2 to s1

⇒ if s2 is tainted, also s1 is tainted

Propagation can be complex: taint of
one sort can propagate as taint of a
different sort

Example 1: strlen if the string is not
NULL-terminated

Example 2: An exit condition of a loop
based on a tainted value taints all the
values of variables modified in the
loop

Taint propagation: example

char buffer[MAX],c;
int i,len;

memset(buffer,'\0',MAX);

// Reads chars from terminal
for (i=0; i<MAX &&(c = getchar())!=EOF; i++)

buffer[i] = c;

// computes len for further loops
len = strlen(buffer);

// loops over len chars to process buffer
for (i=0; i< len ; i++) {
 // process the buffer ...
}

User input: tainted source

c is tainted

buffer is tainted (it is modified in
the loop based on c)

len is tainted

variables modified in the loop
are tainted

An off-by-one bug in the first loop makes buffer non NULL-terminated in case
of an input of MAX characters, which propagates over all tainted variables!

memset(buffer,'\0',MAX); // zeroes the buffer
// Reads chars from terminal (should stop at MAX-1!)
for (i=0; i<MAX & (c = getchar()) != EOF; i++)

buffer[i] = c;

Example with MAX = 16:

$ echo -n "AAAAAAAAAAAAAAA" | ./taint_example
len=15, buffer=AAAAAAAAAAAAAAA

$ echo -n "AAAAAAAAAAAAAAAA" | ./taint_example
len=22, buffer=AAAAAAAAAAAAAAAAP8??tU

Taint propagation: example

16 A’s fill the buffer, the string
becomes non terminated and 6 more

chars are read! len is 22 which is
bigger than MAX-1!

Sanitization

Taint can be removed by sanitization

Two approaches:

Replacement: out of domain values
for restricted sinks are replaced by
in-domain values

Termination: out of domain value is
detected and program either
terminates or skip the code using
that value

Example (replacement): we
NULL-terminate the string

buffer[MAX-1] = '\0';

Example (termination): we check that
it is null terminated

if (buffer[MAX-1] != '\0')
 exit(1);

⇒ buffer is now OK in restricted sinks
requiring NULL-terminated strings

Secure Coding: SEI CERT

The SEI CERT C Coding Standard
provides rules and recommendation
from the security coding community

● Rules provide normative
requirements for code

● Recommendations provide
guidance to improve the safety,
reliability, and security of
software systems.

Audience: programmers

Rules are requirements: violating a
rule is usually a bug that might be
exploited

A violation of a recommendation
does not necessarily indicate the
presence of a defect in the code

⇒ guidelines for safe and secure
coding

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Risk assessment

An indication of

● potential consequences of not
addressing a particular guideline

● the expected remediation costs

Used to prioritize the repair of rule
violation

⇒ Violations that are more critical or
less expensive will be repaired first

Each rule and recommendation has
an assigned priority

Three values are assigned for each
rule on a scale of 1 to 3 for

● severity
● likelihood
● remediation cost

How critical?

Severity

How serious are the consequences of the rule being ignored?

Value Meaning Examples of Vulnerability

1 Low Denial-of-service attack, abnormal termination

2 Medium Data integrity violation, information disclosure

3 High Run arbitrary code

Likelihood

How likely is it that a flaw introduced by violating the rule can lead to an
exploitable vulnerability?

Value Meaning

1 Unlikely

2 Probable

3 Likely

Remediation cost

How expensive is it to comply with the rule?

Note: Low has higher score than High ⇒ Fix low expensive issues first!

Value Meaning Detection Correction

1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

Priorities and levels

Severity, likelihood, and remediation cost are multiplied together. Product
ranges from 1 to 27 with 10 possible values: 1, 2, 3, 4, 6, 8, 9, 12, 18, 27

Level Priorities Possible interpretation

L1 12 , 18 , 27 High severity, likely, inexpensive to repair

L2 6 , 8 , 9 Medium severity, probable, medium cost to repair

L3 1 , 2 , 3 , 4 Low severity, unlikely, expensive to repair

Priorities and levels

(picture from SEI CERT)

https://wiki.sei.cmu.edu/confluence/display/c/How+this+Coding+Standard+is+Organized

Rule 06. Arrays (ARR)

ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

It is crucial that array indexes are always checked

enum { TABLESIZE = 100 };
static int table[TABLESIZE];
int *f(int index) {
 if (index < TABLESIZE) {
 return table + index;
 }
 return NULL;
}

USAGE: if (f(i)) // use *f(i)

 *f(10) == table[10]
 f(100) == NULL

Non compliant!
*f(-1) == table[-1]

⇒ No check on negative
values!

https://wiki.sei.cmu.edu/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts

Rule 06. Arrays (ARR)

Compliant version:

int *f(int index) {
 if (index >= 0 && index < TABLESIZE) {
 return table + index;
 }
 return NULL;
}

Note: Now f(i) is NULL if index is out of bound!

Rule 06. Arrays (ARR)

Alternatively, we can use a stricter type:

int *f(size_t index) {
 if (index < TABLESIZE) {
 return table + index;
 }
 return NULL;
}

Note: size_t is unsigned so it is enough to check that index < TABLESIZE

Rule 06. Arrays (ARR)

Out-of-range pointers can result in buffer overflow: code execution, access to
sensitive information, data corruption, denial of service (high severity)

Overflow is likely to be exploitable and cannot be detected automatically in
many cases (high remediation cost)

Severity Likelihood Remediation
Cost

Priority Level

High Likely High P9 L2

Rule 07. Characters and Strings (STR)

STR32-C. Do not pass a non-null-terminated character sequence to a library
function that expects a string

⇒ Restricted sink: passing a character sequence that is not null-terminated
can result in accessing memory that is outside the bounds of the object

Example:

#include <stdio.h>
int main() {
 char c_str[3] = "abc";

 printf("%s\n", c_str);
}

NULL terminator does not fit
the c_str[3] array!

Sting "abc" will be non
NULL-terminated

https://wiki.sei.cmu.edu/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string

Is the bug exploitable?

Is the previous program vulnerable?

⇒ It depends on what is after the non NULL-terminated string!

int main() {
 char c_str1[3] = "abc";
 char c_str2[3] = "def";

 printf("%s\n", c_str1);
}

OUTPUT: abcdef

Fixing the code

Compliance can be achieved following recommendation STR11-C: Do not
specify the bound of a character array initialized with a string literal

⇒ Size is computed appropriately to NULL-terminate the string!

#include <stdio.h>
int main() {
 char c_str[] = "abc";

 printf("%s\n", c_str);
}

c_str is automatically
allocated as 4 bytes and string

is NULL-terminated

https://wiki.sei.cmu.edu/confluence/display/c/STR11-C.+Do+not+specify+the+bound+of+a+character+array+initialized+with+a+string+literal

Rule 07. Characters and Strings (STR)

Non-terminated strings can result in buffer overflow: code execution, access to
sensitive information, data corruption, denial of service (high severity)

Vulnerability depends on the context and is probable to be exploitable and can
be detected automatically in many cases (medium remediation cost)

Severity Likelihood Remediation
Cost

Priority Level

High Probable Medium P12 L1

More examples

● Rule 07. Characters and Strings (STR): STR31-C. Guarantee that storage
for strings has sufficient space for character data and the null terminator
⇒ Typical off-by-one error!

● Recommendation 07. Characters and Strings (STR): STR07-C. Use the
bounds-checking interfaces for string manipulation. Notice that strncpy
might leave the string unterminated
⇒ BSD strlcpy is safer!

● Rule 10. Environment (ENV): ENV33-C. Do not call system(). Use of the
system() function can result in exploitable vulnerabilities

https://wiki.sei.cmu.edu/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://wiki.sei.cmu.edu/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152177

String manipulation

strcpy(dst,src) copies src,
including NULL, to the buffer pointed
to by dst.

⇒ dst must be large enough to
receive the copy to prevent
overflows!

strncpy(dst,src,n) is similar,
except that at most n bytes of src are
copied

NOTE: If there is no NULL byte among
the first n bytes of src, the string
placed in dst will not be
NULL-terminated!

BSD offers safer versions of these
functions:

strlcpy(dst,src,n) copies at most
n-1 bytes to dst and always adds a
terminating NULL byte

Vulnerabilities due to system()

Tainted source: passing an
unsanitized or improperly sanitized
command string originating from a
tainted source

Path resolution: If a command is
specified without a path name and
the command processor path name
resolution mechanism is accessible
to an attacker (path resolution might
be a tainted source!)

Current working directory: If a
relative path to an executable is
specified and control over the current
working directory is accessible to an
attacker

Untrusted program: If the specified
executable program can be spoofed
by an attacker

