
User Authentication
System Security (CM0625, CM0631) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Introduction

Identification is the task of correctly
identifying a user or entity

It is typically required for enforcing
other security properties

Any time the access to a resource
needs to be regulated, some form of
identification is necessary

Examples:

● Users identify into a system
when they login

● Users identify to mobile network
providers through the SIM card

● Users identify to the SIM card
through a PIN

● Users identify to ATMs with
cards and PINs

Identification == entity authentication

Identification can be though as
authenticating a user or, more
generally, an entity

● Allow a verifier to check
claimant‘s identity

Example: login-password scheme

● The user claims her identity by
inserting the username

● The system verifies the identity
by asking for a secret password

username: Alice

password: pwd1234

Prove that you
are Alice!

OK password
matches!

Properties

An identification scheme should always prevent:

Impersonation, even observing previous identifications

Uncontrolled transferability: the verifier should not reuse a previous
identification to impersonate the claimant with a different verifier, unless
authorized

● The verifier has more information available than an attacker, e.g., when the
communication is encrypted

● Example: same password for different web sites!

Classes of identification schemes

Something known. Check the knowledge of a secret

● passwords, passphrases, Personal Identification Numbers (PINs),
cryptographic keys

Something possessed. Check the possession of a device

● ATM cards, credit cards, smartcards, One Time Password (OTP)
generators, USB crypto-tokens

Something inherent. Check biometric features of users

● Paper signatures, fingerprints, voice and face recognition, retinal patterns

Preventing leakage and guess

Problem 1: What if the password is
sniffed?

Solution: only use password over
encrypted channels

Example 1: passwords and card
numbers sent over https

Example 2: telnet was an insecure
remote terminal client sending
passwords in the clear

Problem 2: What if password is
guessed?

Solution 1: Disable the service after
MAX attempts

Example: lock SIM after 3 attempts

Solution 2: Use strong passwords

⇒ useful in offline attacks when the
service cannot be disabled

“Encrypted” passwords

Problem 3: How are password stored on the server?

IDEA: The server stores a one-way hash of passwords

Definition (hash function). A hash function h computes efficiently a fixed length
value h(x)=z called digest, from an x of arbitrary size.

Definition (one-way hash function). A hash function h is one-way if given a
digest z, it is infeasible to compute a preimage x’ such that h(x’)=z

⇒ Finding a pre-image is computationally infeasible

Dictionary attacks

Brute force: even if one-way hashes
cannot be inverted, an attacker can
try to compute hashes of easy
passwords and see if the hashes
match

Note: It is possible to precompute the
hashes of a dictionary and just
search for z into it

Example:

$ echo -n "mypassword" | sha256sum
89e01536ac207279409d4de1e5253e01f4a
1769e696db0d6062ca9b8f56767c8 -

Password "mypassword" is clearly
weak, we can search for the hash
directly in search engines or using
existing online services

https://md5decrypt.net/en/Sha256/

Salting passwords

Precomputation of password hashes is prevented by adding a random salt

h(pwd,s) == z

login hash salt

...

r1x z s

...

?

“Slow” hashes

Instead of using a single hash, hashes are usually iterated so to slow down
brute-force

Example: Linux passwords

goofy:6Lc5mF7Mm$03IT.AXVhC3Vl4/rLAdomffgv5feOlKBzNGtpEei
2dBgK9z/4QBqM3ZMRK4qcbbYJhkAE.2KscEZx0Am/y50:

● 6: SHA512-based hashing, iterated 5000 times, by default
● Lc5mF7Mm: salt
● 03IT.AXVhC3...Zx0Am/y50: digest

Something possessed. Check the
possession of a device

● ATM cards, credit cards,
smartcards, One Time
Password (OTP) generators,
USB crypto-tokens

Token-based
authentication

Memory cards

Passive card with a memory

Examples:

● Old ATM cards with magnetic
stripe

● Hotel cards to open doors

When paired with a PIN the attacker
needs to steal/duplicate both

Problems:

● Passive cards are usually simple
to clone

Example:

● Old ATM cards were cloned by
putting a fake reader and a
camera (to also steal the PIN)

Smart cards

Smart token with an embedded chip

Various devices:

● Standard smartcard
● USB token
● Small portable objects
● Bigger objects with display

and/or keyboard

Smart card interface and protocol

Interface:

● Contact: a conductive contact
plate on the surface of the card
(typically gold plated) for
transmission of commands,
data, and card status

● Contactless: Both the reader and
the card have an antenna, and
communicate using radio
frequencies

Protocol:

1. Static: token provides a fixed
secret (as for passive cards)

2. One time password (OTP): the
token generates a fresh OTP that
is used for authentication

3. Challenge-response: a challenge
is processed by the token that
produces a response (e.g.
digitally signed)

One Time Passwords (OTP)

Once a secret is leaked it can be used to authenticate many times:

● sniffed password
● cracked password hash
● cloned passive token

One Time Passwords (OTPs) are never reused

They mitigate password leakage/crack by allowing for a single authentication
(es. bank OTPs)

⇒ The token and the computer system must be kept synchronized so the
computer knows the OTP that is current for this token.

Lamport’s hash-based OTP

Given a secret s and a one-way hash function h we compute:

ht(s) which is: h(h(… h(s)…)) t times

We let the Claimant and the Verifier share this value

● The Claimant uses the list of passwords:
ht-1(s), ht-2(s), … h(s), s

● The Verifier computes h(pwd) and checks if it is equal to the stored hash:
h(ht-1(s)) == ht(s)

● If the check succeeds the Verifier stores ht-1(s)

Lamport’s hash-based OTP

passwords: ht-1(s) ht-2(s) … h(s) s

stored hashes: ht(s) ht-1(s) … h2(s) h(s)

Limitation: Only t authentications are possible

Security: Computing next passwords from the current is equivalent to compute
the preimage of h, which is infeasible (h is one-way)

⇒ More secure than storing a shared secret “seed” used to generate the OTP

RSA SecurID Breach (March 2011)

● The values of secret “seeds”
were stored insecurely and have
been leaked through phishing

⇒ 40M of devices replaced, big
companies attacked, huge image
damage for RSA

Case study 1: RSA seed breach

Case study 2: Java keystores

Key Storage

Key Confidentiality
Key Integrity
System Integrity

Keystore

● File containing keys and
certificates

● Password-protected

Key derivation function (KDF)

Password:

Crypto keyKDF(pwd,salt,ic)

SHA1

160b

PREVENT
PRECOMPUTATION

SLOWS DOWN
BRUTE-FORCING

10K

⇒ KDF is similar to password hashing but outputs a crypto key

Oracle JKS Password Cracking

Key Decryption
in JKS

E = Encrypted Key

W = Keystream

W0 = Salt

Ki = Ei ⊕ Wi

Wi = SHA1(pw||Wi-1)

CK = SHA1(pw||K)

8 billions
pw/s with

one
NVIDIAGTX

1080

DER/ASN.1

~100X speedup

JKS/JCEKS Integrity Pwd Cracking

SHA1(***** || ||)

● Efficient integrity-password bruteforce (w. rainbow-tables 🌈)
● Length extension attacks? (not here, length in the header)
● Watch out when integrity password = confidentiality password!

“Mighty Aphrodite”

Keystore contentIntegrity password

SHA1(...)

DoS by Parameters Abuse

● Oracle PKCS12
● Bouncy Castle BKS
● Bouncy Castle PKCS12

Parameters

ASN.1 Structure

KDF+HMAC

SEQUENCE (3 elem)

 SEQUENCE (2 elem)

 SEQUENCE (2 elem)

 OBJECT IDENTIFIER 1.3.14.3.2.26 sha1 (OIW)

 NULL

 OCTET STRING (20 byte) C9C2AF5A...

 OCTET STRING (20 byte) 7B223BBC...

 INTEGER 1024

Iteration Count = 2 31–1

DoS the application

loading the keystore!

SealedObject

JCEKS Secret Keys Code Exec

SecretKey

KeyStore Load Mechanism
● deserialize each SealedObject
● then perform Integrity Check

● Command execution
JDK≤1.7.21 & JDK≤1.8.20

● DoS JDK>1.8.20
● Fixed Oct 2017 CPU

SealedObject

JCEKS Code Exec after Decrypt

SecretKey

Deserialize of SecretKey
● Extended classpath
● Use gadgets from any 3rd-party library

Command execution on
latest JDK if integrity &
key password are known!

JCEKS
Rebrand ;)

Java Code
Execution
KeyStore

Java keystore vulnerabilities (NDSS18)
May 2017
Report to
Oracle and
BC

Apr 2017
Discovered
attacks,
including code
execution

… 2017
Keystore
Analysis

Jul 2017
Issues fixed by
Oracle

Aug 2017
BC1.58 released
fixing some issues

Oct 2017
Oracle CPU
CVE-2017-10345,
CVE-2017-10356

Nov 2017
JCEKS code exec,
again...

Feb 2018
Full disclosure
@NDSS18

Apr 2018
Oracle CPU
CVE-2018-2794

(For more information see the paper and the presentation at NDSS18)

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_02B-1_Focardi_paper.pdf
https://www.youtube.com/watch?v=JtFJuxRC56s&index=1&list=PLfUWWM-POgQstA8nu7IsnP5rTkG9e0bL2&t=0s

Responses

● Oracle Keytool, warning on JKS/JCEKS
○ The JCEKS keystore uses a proprietary format. It is recommended

to migrate to PKCS12 which is an industry standard format [...]

● Oracle JCEKS KDF params for PBE
○ from 20 to 200K iterations (max 5M)

● Oracle PKCS12
○ from 1024 to 50K iterations for PBE (max 5M)
○ from 1024 to 100K iterations for HMAC (max 5M)

● Fix(es) to the Oracle JCEKS code execution

● Similar improvements in Bouncy Castle

CVE-2017-10356
CVSS 6.2

CVE-2017-10345
CVSS 3.1

CVE-2018-2794
CVSS 7.7

Something inherent. Check
biometric features of users

● Signatures, fingerprints, voice,
face, hand geometry, retinal
patterns, iris, ...

Biometrics

Biometrics

1. Enrollment: features are
extracted and stored in database

2. Verification: features are
extracted and compared with
the stored ones

A delicate balance:

No impersonation (false positives)
but correct users should be identified
most of the times (no false negative)

Problem: A breach in the biometric
database has high impact:

● biometric data is unique, belongs
to users

● differently from passwords it
cannot be changed if leaked

New attacks: adversarial machine
learning

https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php
https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php

