User Authentication

System Security (CM0625, CM0631) 2024-25
Universita Ca’ Foscari Venezia

Riccardo Focardi

www.unive.it/data/persone/5590470
secgroup.dais.unive.it

Universita
Ca'Foscari
Venezia



https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Introduction

Identification is the task of correctly Examples:

identifying a user or entity _ o
e Users identify into a system

It is typically required for enforcing when they login
other security properties e Users identify to mobile network

, providers through the SIM card
Any time the access to a resource e Users identify to the SIM card

needs to be regulated, some form of through a PIN

identification is necessary e Users identify to ATMs with
cards and PINs



ldentification == entity authentication

|dentification can be though as

authenticating a user or, more
generally, an entity

Allow a verifier to check
claimant's identity

username: Alice

Example: login-password scheme

The user claims her identity by
inserting the username

The system verifies the identity
by asking for a secret password

password: pwd1234

Prove that you
are Alice!

=
.

OK password
matches!

J




Properties

An identification scheme should always prevent:

Impersonation, even observing previous identifications

Uncontrolled transferability: the verifier should not reuse a previous

identification to impersonate the claimant with a different verifier, unless
authorized

e The verifier has more information available than an attacker, e.g., when the
communication is encrypted

e Example: same password for different web sites!



Classes of identification schemes

Something known. Check the knowledge of a secret

e passwords, passphrases, Personal Identification Numbers (PINs),
cryptographic keys

Something possessed. Check the possession of a device

e ATM cards, credit cards, smartcards, One Time Password (OTP)
generators, USB crypto-tokens

Something inherent. Check biometric features of users

e Paper signatures, fingerprints, voice and face recognition, retinal patterns



Preventing leakage and guess

Problem 1: What if the password is
sniffed?

Solution: only use password over
encrypted channels

Example 1: passwords and card
numbers sent over https

Example 2: telnet was an insecure
remote terminal client sending
passwords in the clear

Problem 2: What if password is
guessed?

Solution 1: Disable the service after
MAX attempts

Example: lock SIM after 3 attempts
Solution 2: Use strong passwords

=> useful in offline attacks when the
service cannot be disabled



“Encrypted” passwords

Problem 3: How are password stored on the server?
IDEA: The server stores a one-way hash of passwords

Definition (hash function). A hash function h computes efficiently a fixed length
value h(x)=z called digest, from an x of arbitrary size.

Definition (one-way hash function). A hash function h is one-way if given a
digest z, it is infeasible to compute a preimage x' such that h(x)=z

= Finding a pre-image is computationally infeasible



Dictionary attacks

Brute force: even if one-way hashes
cannot be inverted, an attacker can
try to compute hashes of easy
passwords and see if the hashes
match

Note: It is possible to precompute the
hashes of a dictionary and just
search for z into it

Example:

S echo -n "mypassword" | sha256sum
89e01536ac207279409d4de1e5253e01f4a
1769e696db0d6062ca9b8f56767¢c8 -

Password "mypassword"” is clearly
weak, we can search for the hash
directly in search engines or using
existing


https://md5decrypt.net/en/Sha256/

Salting passwords

Precomputation of password hashes is prevented by adding a random salt

login hash salt

rlx Z S

?

h(pwd,s) == z



“Slow” hashes

Instead of using a single hash, hashes are usually iterated so to slow down
brute-force

Example: Linux passwords

goofy :S6SLc5mF7MmSO3IT.AXVhC3V14/rLAdomffgv5fe01KBzNGtpEei
2dBgK9z/4QBqM3ZMRK4qcbbYJhKAE .2KscEZx0Am/y50: .....

e 6:SHAS512-based hashing, iterated 5000 times, by default
e Lc5mF7Mm: salt
e O3IT.AXVhC3...Zx0Am/y50: digest



Something possessed. Check the

TO ke n - b a S e d possession of a device
authentication [N

Password (OTP) generators,
USB crypto-tokens




Memory cards

Passive card with a memory : Problems:
Examples: . e Passive cards are usually simple
to clone

e Old ATM cards with magnetic
stripe Example:

e Hotel cards to open doors
e Old ATM cards were cloned by

When paired with a PIN the attacker putting a fake reader and a
needs to steal/duplicate both camera (to also steal the PIN)



Smart cards

Smart token with an embedded chip

Various devices:

e Standard smartcard

e USB token

e Small portable objects

e Bigger objects with display a

and/or keyboard



Smart card interface and protocol

Interface:

Contact: a conductive contact
plate on the surface of the card
(typically gold plated) for
transmission of commands,
data, and card status
Contactless: Both the reader and
the card have an antenna, and
communicate using radio
frequencies

Protocol:

1.

3.

Static: token provides a fixed
secret (as for passive cards)
One time password (OTP): the
token generates a fresh OTP that
is used for authentication
Challenge-response: a challenge
is processed by the token that
produces a response (e.qg.
digitally signed)



One Time Passwords (OTP)

Once a secret is leaked it can be used to authenticate many times:

e sniffed password
e cracked password hash
e cloned passive token

One Time Passwords (OTPs) are never reused

They mitigate password leakage/crack by allowing for a single authentication
(es. bank OTPs)

= The token and the computer system must be kept synchronized so the
computer knows the OTP that is current for this token.



Lamport's hash-based OTP

Given a secret s and a one-way hash function h we compute:
ht(s) whichis: h(h(.. h(s).. )) ttimes

We let the Claimant and the Verifier share this value

e The Claimant uses the list of passwords:
ht1(s), h*2(s), .. h(s), s

e The Verifier computes h(pwd) and checks if it is equal to the stored hash:
h(h**(s)) == h%(s)

e If the check succeeds the Verifier stores h*"1(s)



Lamport's hash-based OTP

passwords: ht1(s) ht2(s) .. h(s) s

stored hashes: h%(s) ht*1(s) .. h%(s) h(s)

Limitation: Only t authentications are possible

Security: Computing next passwords from the current is equivalent to compute
the preimage of h, which is infeasible (h is one-way)

=> More secure than storing a shared secret “seed” used to generate the OTP



Case study 1: RSA seed breach

RSA SecurlD Breach (March 2011)

The values of secret “seeds”
were stored insecurely and have
been leaked through phishing

40M of devices replaced, big
companies attacked, huge image
damage for RSA

(= @ £445 051,




Case study 2: Java keystores

Key Storage Keystore

e File containing keys and

Key Confidentiality ./ certificates
V4 e Password-protected

Key Integrity
f System Integrity s/

3k %k %k 3k %k k




Key derivation function (KDF)

PREVENT SLOWS DOWN
PRECOMPUTATION Q n BRUTE-FORCING

(o o

= KDF is similar to password hashing but outputs a crypto key

160b 10K

Password: KDF (pwd, salt,ic)

i

%k 3k 5k 5k 5k >k >k >k %k ok




8 billions
pw/s with
E = Encrypted Key one
NVIDIAGTX
1080

CK

W, W = Keystream
A ﬂSHTM | S?@ g SHTM.?.__ W, = Salt W, = SHAT(pw|IW_ )
D K=EoW, CK = SHA1(pwIIK)




JKS/JCEKS Integrity Pwd Cracking

Integrity password Keystore content

“Mighty Aphrodite”

e Efficient integrity-password bruteforce (w. rainbow-tables ()
e Length extension attacks? (not here, length in the header)
e Watch out when integrity password = confidentiality password!



DoS by Parameters Abuse

KDF+HMAC

Parameters

0,
e Oracle PKCS12 A °~5‘,«/7@ rng

e Bouncy Castle B, 607}79 Wy, A 7
e Bouncy Castle PKCS.. %he 4 /Oaz,b
§},’ 1)

-

SEQUENCE (3 elem)
SEQUENCE (2 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER 1.3.14.3.2.26 shal (OIW)
NULL
OCTET STRING (20 byte) C9C2AFS5A. ..

OCTET STRING (20 byte) 7B223BBC...
INTEGER 1024
N )




JCEKS Secret Keys Code Exec

Sl e N <

e Command execution
JDK=1.7.21 & JDK=1.8.20

e DoS JDK>1.8.20

e Fixed Oct 2017 CPU

KeyStore Load Mechanism
e deserialize each SealedObject
e then perform Integrity Check



JCEKS Code Exec after Decrypt

JCEKS §E
}‘ | rerend)

Java Code
Execution
mand execution on

Deserialize of Secret! KeyStore atest JDK if integrity &
e Extended classpath

e Use gadgets from any 3rd-pe

key password are known!



Java keystore vulnerabilities (NDSS18)

.. 2017 May 2017 Aug 2017 Nov 2017

Keystore Report to BC1.58 released JCEKS code exec,

Analysis Oracle and fixing some issues again...

BC

Apr 2017 Jul 2017 Oct 2017 Feb 2018 Apr 2018
Discovered Issues fixed by Oracle CPU Full disclosure pgrgcle CPU
attacks, Oracle CVE-2017-10345, @NDSS18 CVE-2018-2794
including code CVE-2017-10356
execution

(For more information see the and the at NDSS18)


https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_02B-1_Focardi_paper.pdf
https://www.youtube.com/watch?v=JtFJuxRC56s&index=1&list=PLfUWWM-POgQstA8nu7IsnP5rTkG9e0bL2&t=0s

Responses

CVE-2017-10356
e Oracle Keytool, warning on JKS/JCEKS CVS56.2
o The JCEKS keystore uses a proprietary format. It is recommended
to migrate to PKCS12 which is an industry standard format [...]

e Oracle JCEKS KDF params for PBE
o from 20 to 200K iterations (max 5M)

e Oracle PKCS12
o from 1024 to 50K iterations for PBE (max 5M)
o from 1024 to 100K iterations for HMAC (max 5M)

e Fix(es) to the Oracle JCEKS code execution CVE-2017-10345
T : CVSS 3.1
e Similar improvements in Bouncy Castle CVE-2018-2794

CVSS 7.7



Something inherent. Check
biometric features of users

B | om e-trl CS e Signatures, fingerprints, voice,

face, hand geometry, retinal
patterns, iris, ...




Biometrics

1. Enrollment: features are Problem: A breach in the biometric
extracted and stored in database database has high impact:
2. \Verification: features are

extracted and compared with e biometric data is unique, belongs

the stored ones t(? USETS .
e differently from passwords it
A delicate balance: cannot be changed if leaked
No impersonation (false positives) New attacks:

but correct users should be identified
most of the times (no false negative)



https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php
https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php

