
Database Security
System Security (CM0625, CM0631) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Databases tend to concentrate
sensitive information in a single
point:

● Financial data
● Personal data of customers
● Proprietary product information

(IP)
● Medical records
● ...

Motivations
What makes database

security relevant

Motivations
What makes database

security difficult

● DataBase Management
Systems (DBMS) are very
complex

● Databases offer a complex
access language: Structured
Query Language (SQL)

● Real systems often integrate
different DBMS technologies
running on various operating
systems

Motivations
What makes database

security different

Databases need dedicated access
control systems and security
mechanisms

● regulate access to specific
records and fields in the
database

● deal with the peculiarities of
Structured Query Language
(SQL)

Relational databases

Table: a relation in the form of a
N x M matrix

Field: a column of the table

Record: a row of the table

Primary key: one or more fields
(columns) that uniquely identify a
record (row)

● Typically a unique ID

ID Name Salary Phone

1 Alice 70K 041-2347...

2 Bob 50K 041-2348...

3 Carol 60K 041-2349...

Relationships

foreign key: a primary key of one table appearing as field of another table

ID Name Salary Phone DID

1 Alice 70K 041-2347... 2

2 Bob 50K 041-2348... 2

3 Carol 60K 041-2349... 1

DID Name Address

1 R&D via Roma 5

2 IT via Torino 3

3 Marketing via Milano 4

Views

View: a virtual table with selected
rows and columns from one or more
tables

Can be used for security to give a
partial view of data

Example: Employees with department
name, address, phone number (salary
is hidden)

Name DName Address Phone

Alice IT via Torino 3 041-2347...

Bob IT via Torino 3 041-2348...

Carol R&D via Roma 5 041-2349...

Structured Query Language (SQL)

SQL: a standardized language that
can be used to

● create tables
● insert and delete data in tables
● create views
● retrieve data with query

statements
● …

CREATE TABLE Employee (
 ID INTEGER PRIMARY KEY,
 Name CHAR (30),
 Salary INTEGER,
 Phone CHAR (10),
 DID INTEGER,
 FOREIGN KEY (DID)
 REFERENCES Department (DID)
)

CREATE TABLE Department (
 DID INTEGER PRIMARY KEY,
 Name CHAR (30),
 Address CHAR (60)
)

SELECT and VIEW

SELECT statements extract data
satisfying constraints

SELECT Name, Phone
 FROM Employee
 WHERE DID = 2

VIEW is an abstract table built
through a SELECT statement

CREATE VIEW EmplDep
 (Name, Dname, Phone)
 AS SELECT E.Name, D.Name, E.Phone
 FROM Department D Employee E
 WHERE E.DID = D.DID

Name Phone
Alice 041-2347...

Bob 041-2348...

Name DName Phone
Alice IT 041-2347...

Bob IT 041-2348...

Carol R&D 041-2349...

SQL injection

SQLi, along with injection attacks, is
considered one of the top web
application security threats
[OWASP Top 10]

Injection attack: the attacker
triggers unexpected behaviour by
supplying untrusted, malicious
input to an application

(SQLi)

https://owasp.org/www-project-top-ten/

SQLi scenario

Web applications

● have dynamic content that
depends on data stored in
databases

● manage data through queries

⇒ When queries depend on
untrusted user input an attacker
might inject malicious SQL code
that will be sent to the database

Typical attack:

1. Attacker sends malicious input
2. The web application server

executes a query that contains
the input (injection)

3. The result of the query is
included in a dynamic web
application page

4. Attacker gets sensitive data
directly from the web page

SQLi example

Attacker injects input that

1. terminates a string with a quote
2. adds malicious code
3. comments out the rest of the

query (including the original
closed quote)

Example:

Query = "SELECT * FROM Users WHERE
 Name = '" + Username + "'"

where Username is the (untrusted)
input taken from a web form

Username = "'; DROP TABLE Users -- "

will give:
SELECT * FROM Users WHERE
 Name = ''; DROP TABLE Users-- '

Note: In mysql "--" should have a space before
the comment, as in "-- "

“Exploits of a Mom” https://xkcd.com/327/

Origins of injection

User input: input from forms is used
to compose SQL queries

Server variables: headers that are
logged and might be modified by the
attacker. For example, headers
logged for usage statistics

Second-order injections: the attacker
injects data in the database that is, in
turn, used to compose another query

Cookies: browser cookies are used to
implement stateful sessions, but can
be manipulated by the attacker. This
can trigger injections when cookie
value is used to compose queries

Physical user input: input that comes
from physical devices or media.
Examples are barcodes, RFID tags,
scanned paper documents, ...

SQLi

Inband: uses the same
communication channel for SQLi
and retrieving results

Inferential: no direct leakage; the
attacker reconstructs the
information by observing the
resulting behavior

Attack types

Inband attacks (1)

Tautology: This form of attack injects
code in conditional statements so
they always evaluate to true

Example: authentication check

Query = "SELECT * FROM Users WHERE
 Name = '" + Username + "' AND
 Pwd = '" + Password + "'"

Authentication fails if the query
returns an empty result

The attacker injects

Username = "admin"
Password = "' OR 1=1 -- "

which makes the WHERE condition
always true

SELECT * FROM Users WHERE
 Name = 'admin' AND
 Pwd = '' OR 1=1 -- '

⇒ Attacker logs in as admin!

Inband attacks (2)

End-of-line comment: legitimate
code that follows is nullified through
usage of end of line comments

Example: same as before ...

Query = "SELECT * FROM Users WHERE
 Name = '" + Username + "' AND
 Pwd = '" + Password + "'"

Authentication fails if the query
returns an empty result

The attacker injects

Username = "admin' -- "
Password = ""

which nullifies the AND condition

SELECT * FROM Users WHERE
 Name = 'admin' -- ' AND Pwd = ''

⇒ Attacker logs in as admin!

Inband attacks (3)

Piggybacked queries: The attacker
adds additional queries beyond the
intended query, piggybacking the
attack on top of a legitimate request

NOTE: This technique relies on server
configurations that allow for different
queries within a single string of code

As seen before, the attacker injects

Username = "'; DROP TABLE Users -- "
Password = ""

which piggybacks a DROP request

SELECT * FROM Users WHERE
 Name = ''; DROP TABLE Users -- '
 AND Pwd = ''

⇒ Attacker drops a table!

Inferential attacks

Incorrect queries: the default error
page returned by application servers
is often overly descriptive, revealing

● the query (or a significant part of
the query)

● name of tables and columns
● possible input filtering

⇒ Typically the first step of attacks

Blind SQL injection: attacker infers
the data present in a database even
when the application does not
display errors or data

The attacker “asks the server”
true/false questions and observes
the behaviour. Example with user ID:

● User is authorized to see a page
● Access is denied

SQLi

Defensive coding: secure coding
principles that prevent SQLi

Detection/prevention: detect and
block attacks at runtime, e.g., Web
Application Firewalls (WAF)

Testing: tools that search for SQLi
vulnerabilities (pentest tools)

Countermeasures

Defensive coding

Whitelisting input: check that input
belongs to a whitelist of trusted
values
Example: a column name for sorting

Strict typing: check input type
Example: integer values

Prepared statements: query is
parametrized and pre-parsed;
parameters never interpreted as code

Typed APIs: generic APIs for DBMS
access with (typed) parameterized
queries. Example: PHP PDO

Trusted input: crypto mechanisms to
ensure input authenticity. Example:
HMAC for cookies, RFID, barcodes

Sanitization: use standard functions
to sanitize input. Last resort, when no
other defence is possible

https://www.php.net/manual/en/book.pdo.php

Prepared statements example

mysql> PREPARE stmt1 FROM 'SELECT * FROM people WHERE lastname=?';
Statement prepared

mysql> set @n = 'focardi';

mysql> EXECUTE stmt1 USING @n;
+----+----------+----------+----------+----------------------+------------+----
| id | name | lastname | username | mail | password | url
+----+----------+----------+----------+----------------------+------------+----
| 2 | Riccardo | Focardi | r1x | focardi@dsi.unive.it | ********** | htt
+----+----------+----------+----------+----------------------+------------+----

mysql> set @n = "'' OR 1 # ";

mysql> EXECUTE stmt1 USING @n;
Empty set (0.00 sec)

Statement is parsed and
prepared

Trying the injection

Injection fails: SQL has been parsed
already and data are only interpreted
as data

Control access to specific portions
of the database

Access rights might be determined
by the values (e.g. through views)

DAC and RBAC

Database
Access Control

Managing privileges

Grant: used to grant access on
specific tables to users/roles

Example:

GRANT SELECT ON * TO alice

⇒ Grants SELECT (read) access on the
whole database to user alice

Revoke: used to revoke access rights
previously granted

Example:

REVOKE SELECT ON * FROM alice

⇒ Revokes the previously granted
permission

Delegation and cascading

Privileges granted with “grant” option
can be, in turn, granted to more users

Example:

GRANT SELECT ON * TO alice
WITH GRANT OPTION

delegates alice to grant the same
permission to bob,carol, ...

Some DBMS implements revoke
cascading

REVOKE SELECT ON * FROM alice
CASCADE

revokes the permission from alice
and from all the users who got the
permission through an alice’s grant

Example: cascading

Alice

Bob

Carol

Eduard

David

Felix

t=10 t=30 t=40

t=50t=20 t=60

Example: Alice revokes grant to Bob

Alice

Bob

Carol

Eduard

David

Felix

t=10 t=30 t=40

t=50t=20 t=60

Example: Alice revokes grant to Bob

Alice

Bob

Carol

Eduard

David

Felix

t=50t=20 t=60

Roles: example

CREATE ROLE 'app_developer', 'app_read', 'app_write';

GRANT ALL ON * TO 'app_developer';
GRANT SELECT ON * TO 'app_read';
GRANT INSERT, UPDATE, DELETE ON * TO 'app_write';

GRANT 'app_developer' TO 'dev1';
GRANT 'app_read' TO 'read_user1', 'read_user2';
GRANT 'app_read', 'app_write' TO 'rw_user1';

● rw_user1 can SELECT, INSERT, UPDATE, DELETE
● read_user1 and read_user2 can only SELECT

