
Unix Access Control
Sicurezza (CT0539) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Definition

Access Control: Protection of
system resources against
unauthorized access

● The process regulating the use
of system resources according
to a security policy

● Access is permitted only by
authorized entities (users,
programs, processes, or other
systems) according to that
policy.

RFC 4949
Internet Security Glossary

https://tools.ietf.org/html/rfc4949#page-11

Access Control

Authorization
database

User

Identification
(authentication)

Access
Control

Resources

Subjects and objects

Subject: is an entity capable of
accessing resources (objects)

● Any user or application actually
gains access to an object by
means of a process

● The process inherits the
attributes of the user, such as
the access rights

Object: is a resource to which access
is controlled. An object is an entity
used to contain and/or receive
information

Examples: pages, segments, files,
directories, mailboxes, messages,
programs, communication ports, I/O
devices.

Access rights

Read: Subject may view information
in an object; read access includes the
ability to copy or print

Write: Subject may add, modify, or
delete data in an object

Execute: Subject may execute an
object (e.g. a program)

Delete: Subject may delete an object

Create: Subject may create an object

Search: Subject may search into an
object (e.g., a query giving a partial
view of the content)

Note: one access right might imply
another one, e.g. read ⇒ search

Access Matrix

Access matrix: access rights for each subject (row) and object (column)

 README.txt /etc/shadow Carol.pdf /bin/bash

Alice Read
Write

Read
Write

Read
Write
Execute

Bob Read Read
Execute

Carol Read Read
Write

Read
Execute

NOTE: can be sparse!

Access Control List (ACL): for each
object lists subjects and their
permission rights
(decomposition by columns)

● Easy to find which subjects have
access to a certain object

● Hard to find the access rights for
a certain subject

Access control lists vs. capabilities

Capabilities: for each subject, list
objects and access rights to them
(decomposition by rows)

● Easy to find the access rights for
a certain subject

● Hard to find which subjects have
access to a certain object

README.txt:
Alice: Read, Write;
Bob: Read;
Carol: Read.

 /etc/shadow:
Alice: Read, Write.

Example: ACL

 README.txt /etc/shadow Carol.pdf /bin/bash

Alice Read
Write

Read
Write

Read
Write
Execute

Bob Read Read
Execute

Carol Read Read
Write

Read
Execute

Example: Capabilities

Alice:
README.txt: Read, Write;
/etc/shadow: Read, Write;
/bin/bash: Read, Write, Execute.

 Bob:
README.txt: Read;
/bin/bash: Read, Execute.

 READM
E.txt

/etc/sha
dow

Carol.p
df

/bin/bas
h

Alice Read
Write

Read
Write

Read
Write
Execute

Bob Read Read
Execute

Carol Read Read
Write

Read
Execute

Unix Access Control

The Unix kernel has unrestricted
access to the whole machine

Programs (subjects) access files and
devices (objects) through the kernel

Access decisions are based on the
object’s userid/groupid and subject’s
userid and groups

⇒ a simplified form of ACL

If the user is root (userid = 0), access
is always granted by the kernel

Users have a userid/groupid and may
belong to several additional groups

Command id displays information
about user and group id

alice:~$ id
uid=1000(alice) gid=1000(alice)
groups=1000(alice),1003(student)

Example: add a new user

$ docker run --rm -it secunive/sicurezza:ac
root[~]#

root[~]# id # display information about user and groups
uid=0(root) gid=0(root)
groups=0(root),0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel),11(floppy),20(di
alout),26(tape),27(video)

root[~]# adduser -D alice # creates new user alice with no password
root[~]# echo 'alice:alice' | chpasswd # change alice’s password to ‘alice’
chpasswd: password for 'alice' changed

root[~]# su - alice # switches to user alice

alice[~]$ id # display information about user and groups
uid=1000(alice) gid=1000(alice) groups=1000(alice)

Example: add a new group

root[~]# addgroup student # create group student

root[~]# usermod -a -G student alice # alice is in group student

root[~]# id alice
uid=1000(alice) gid=1000(alice) groups=1000(alice),1001(student)

root[~]# adduser -D bob; echo 'bob:bob' | chpasswd

root[~]# usermod -a -G student bob # both alice and bob are in group student

root[~]# id bob
uid=1002(bob) gid=1002(bob) groups=1002(bob),1001(student)

Unix permissions

File permission is made of 3 triads
defining the permissions granted to
the owner, to the group and to all the
other users

Example: rw-r--r--

Each permission triad is made up of
the following characters:

r: the file can be read / the directory’s
contents can be shown

w: the file can be modified / the
directory’s contents can be modified

x: the file can be executed / the
directory can be traversed

s: the file is SUID (SGID if s is in the
group triad), implies x

⇒ Enables the file to run with the
privileges of its owner (or group)

Example: permissions

root[~]# ls -al # display files and their permissions
total 12
drwx------ 1 root root 4096 Nov 3 17:13 .
drwxr-xr-x 1 root root 4096 Nov 3 17:13 ..
-rw------- 1 root root 233 Nov 3 17:15 .ash_history

root[~]# pwd # current working directory
/root

root[~]# su - alice # become alice

alice[~]$ pwd # current working directory
/home/alice

alice[~]$ ls /root # try to list the content of directory /root
ls: cannot open directory '/root': Permission denied

Example: permissions

alice[~]$ ls -al # display files and their permissions
total 12
drwxr-sr-x 2 alice alice 4096 Nov 3 17:14 .
drwxr-xr-x 1 root root 4096 Nov 3 17:14 ..
-rw------- 1 alice alice 36 Nov 3 17:15 .ash_history

alice[~]$ ls -al .. # display .. files and their permissions
total 16
drwxr-xr-x 1 root root 4096 Nov 3 17:14 .
drwxr-xr-x 1 root root 4096 Nov 3 17:13 ..
drwxr-sr-x 2 alice alice 4096 Nov 3 17:14 alice
drwxr-sr-x 2 bob bob 4096 Nov 3 17:14 bob

alice[~]$ ls -al ../bob # try to list files in /home/bob
total 8
drwxr-sr-x 2 bob bob 4096 Nov 3 17:14 .
drwxr-xr-x 1 root root 4096 Nov 3 17:14 ..

Example: permissions

alice[~]$ which ls # show the location of the binary program
/bin/ls
alice[~]$ ls -al /bin/ls # display its permissions
lrwxrwxrwx 1 root root 20 Nov 3 17:11 /bin/ls -> ../usr/bin/coreutils

alice[~]$ ls -al /usr/bin/coreutils # it’s a link, check the real permissions
-rwxr-xr-x 1 root root 1074184 May 3 2019 /usr/bin/coreutils

alice[~]$ ls -al / | grep bin # display permissions of /bin and /sbin
drwxr-xr-x 1 root root 4096 Nov 3 17:11 bin
drwxr-xr-x 1 root root 4096 Nov 3 17:11 sbin

alice[~]$ ls -al /bin/su # display permissions of /bin/su
-rwsr-xr-x 1 root root 36488 May 10 2019 /bin/su
alice[~]$ su - bob # it is SUID root: passwords, setuid, ...
Password:
bob[~]$

Managing permissions

Unix permissions can be altered
using the chmod command

Example: chmod 600 myfile
set permissions to rw-------

600 is interpreted as an octal
number, each digit corresponding to
the three permission bits

6 is 110 which is rw-
0 is 000 which is ---

Owner and group can be set using the
chown command

⇒ non-root users can change the
group (to one they belong to) but
not the ownership.

Example:
chown alice:student myfile

changes the group to student, OK if
alice is in group student

Example: managing permissions

bob[~]$ echo "message for Alice" > test.txt # create file for alice

bob[~]$ chown alice:alice test.txt # try to change owner and group to alice
chown: changing ownership of 'test.txt': Operation not permitted

bob[~]$ chown bob:alice test.txt # try to change group to alice
chown: changing ownership of 'test.txt': Operation not permitted

bob[~]$ chown bob:student test.txt # try to change group to student
bob[~]$ ls -l # check that group is now student
total 4
-rw-r--r-- 1 bob student 18 Nov 3 17:21 test.txt

bob[~]$ chmod 640 test.txt # change permissions
bob[~]$ ls -l
total 4
-rw-r----- 1 bob student 18 Nov 3 17:21 test.txt # readable by group student!

Example: managing permissions

bob[~]$ su - alice # switch to alice
Password:
alice[~]$ cat /home/bob/test.txt # try to read test.txt as alice
message for Alice

alice[~]$ exit # exits alice’s shell (back to bob)
bob[~]$ exit # exits bob’s shell (back to root)
root[~]# adduser -D carol # add user carol
root[~]# su - carol # switch to carol
carol[~]$ id # display carol’s groups
uid=1003(carol) gid=1003(carol) groups=1003(carol)

carol[~]$ ls -l /home/bob/test.txt # display test.txt permissions
-rw-r----- 1 bob student 18 Nov 3 17:21 /home/bob/test.txt

carol[~]$ cat /home/bob/test.txt # try to read test.txt as carol
cat: /home/bob/test.txt: Permission denied

SUID and SGID

SUID: When s appears in place of x in
the owner triad, the program will be
run with the privileges of the owner

Example: system utility requiring root
permissions such as /bin/su

NOTE: SUID is risky: a vulnerability
would give root access to the
attacker!
⇒ we will discuss mitigations ...

SGID: When s appears in place of x in
the group triad, the program will be
run with the privileges of the group

Example: access to /etc/shadow
by /sbin/unix_chkpwd

NOTE: When a directory d has SGID
set then all files or directories created
inside d will be owned by the same
common (SGID) group

Example: messing up /bin/su permissions

root[~]# ls -al /bin/su # display /bin/su permissions
-rwsr-xr-x 1 root root 36488 May 10 2019 /bin/su

root[~]# chmod 755 /bin/su # disable SUID root

root[~]# ls -al /bin/su # display /bin/su permissions
-rwxr-xr-x 1 root root 36488 May 10 2019 /bin/su

root[~]# su - alice # switch from root to alice
alice[~]$ su - bob # switch to alice to bob
Password:
setgid: Operation not permitted

alice[~]$ exit
root[~]# chmod 4755 /bin/su # re-enable SUID root
root[~]# ls -al /bin/su # display /bin/su permissions
-rwsr-xr-x 1 root root 36488 May 10 2019 /bin/su

Example: SGID

root[~]# cd /tmp/Challenge2/ # set current directory to /tmp/Challenge2/

root[/tmp/Challenge2]# ./pwdChallenge # check the pwdChallenge program
Insert password: AAAAAAAAAAAAAAA
Authenticated!

root[/tmp/Challenge2]# cat pwd.txt # display the password
AAAAAAAAAAAAAAA

root[/tmp/Challenge2]# ls -al # display the permissions
total 28
drwxr-xr-x 1 root root 4096 Nov 3 21:53 .
drwxrwxrwt 1 root root 4096 Nov 3 21:53 ..
-rw------- 1 root root 15 Nov 3 17:59 pwd.txt
-rwx------ 1 root root 13128 Mar 26 2020 pwdChallenge

Example: SGID

root[/tmp/Challenge2]# addgroup challenge # create group challenge
root[/tmp/Challenge2]# chown root:challenge pwd* # change group to challenge
root[/tmp/Challenge2]# ls -al
total 36
drwxr-xr-x 1 root root 4096 Nov 3 21:53 .
drwxrwxrwt 1 root root 4096 Nov 3 21:53 ..
-rw------- 1 root challenge 15 Nov 3 17:59 pwd.txt
-rwx------ 1 root challenge 13128 Mar 26 2020 pwdChallenge

root[/tmp/Challenge2]# chmod 2755 pwdChallenge # SGID! NOTE: 2754 is not enough
root[/tmp/Challenge2]# chmod 640 pwd.txt # change pwd.txt permissions
root[/tmp/Challenge2]# ls -al # display new permissions
total 36
drwxr-xr-x 1 root root 4096 Nov 3 21:53 .
drwxrwxrwt 1 root root 4096 Nov 3 21:53 ..
-rw-r----- 1 root challenge 15 Nov 3 17:59 pwd.txt
-rwxr-sr-x 1 root challenge 13128 Mar 26 2020 pwdChallenge

Example: SGID

root[/tmp/Challenge2]# su - alice

alice[~]$ cd /tmp/Challenge2/

alice[/tmp/Challenge2]$./pwdChallenge
Insert password: AAAAAAAAAAAAAAA
Authenticated!

alice[/tmp/Challenge2]$ cat pwd.txt
cat: pwd.txt: Permission denied

Now alice can run the program but cannot access the password file

⇒ SGID let the program access the file by inheriting the group privileges

Sticky bit

In shared folders such as /tmp it is
useful to give full access to any user

Use Case: applications add their
(private) temporary folders and files
to /tmp

NOTE: full access would make it
possible for any user to delete files
owned by other users!

Sticky bit: When t appears in place of
x in the other triad, the directory
forbid users to delete files that they
do not own

Example: /tmp permissions are
usually set as:

drwxrwxrwt 1 root root

Example: sticky bit

root[~]# ls -al /tmp/ # display the sticky bit permissions
total 28
drwxrwxrwt 1 root root 4096 Nov 3 21:53 .
drwxr-xr-x 1 root root 4096 Nov 3 22:12 ..
drwxr-xr-x 1 root root 4096 Nov 3 21:53 Challenge2
-rwsr-xr-x 1 root root 12864 Nov 3 21:19 privilegeDropTest

root[~]# su - alice # switch to alice
alice[~]$ rm /tmp/privilegeDropTest # try to remove privilegeDropTest
rm: remove write-protected regular file '/tmp/privilegeDropTest'? y
rm: cannot remove '/tmp/privilegeDropTest': Operation not permitted
root[~]# chmod 777 /tmp # remove the sticky bit
root[~]# su - alice # switch to alice
alice[~]$ rm /tmp/privilegeDropTest # try to remove privilegeDropTest
rm: remove write-protected regular file '/tmp/privilegeDropTest'? y
alice[~]$ ls -al /tmp/privilegeDropTest # check that the file has been deleted
ls: cannot access '/tmp/privilegeDropTest': No such file or directory

ACLs, Capabilities and privilege drop

Access Control Lists (ACLs) define
different permissions on a
per-user/per-group basis. They have
higher priority over Unix permissions

Linux Capabilities: instead of SUID
permission, assign only the root
capabilities that are necessary to
perform the administrative task

⇒ no full root access if vulnerable!

SUID is risky: a vulnerability would
give root access to the attacker!

Privilege drop: use root privileges at
the beginning and then drop to
standard user privileges

IDEA: when the user id is set back to
the “real” one it cannot be set back
again to root (setuid is “one-way”)

Example: privilege drop

int show_uid() {
 printf("Effective user id is: %d\n",geteuid());
 printf("Real user id is: %d\n",getuid());
 return getuid(); // returns the real user id
}

int main () {
 int myuid;

 myuid = show_uid();

 printf("[-] Trying to open shadow file (need to be root)\n");
 if(open("/etc/shadow",O_RDONLY) < 0)
 die("Failed to open shadow");

 printf("[-] Trying privilege drop\n");
 if (setuid(myuid)<0) die("Failed to set original uid\n");

Privileged access
(requires SUID root)

Drops privileges as
soon as possible

Example: privilege drop

 ...

 show_uid();

 printf("[-] Checking that shadow cannot be opened\n");
 if(open("/etc/shadow",O_RDONLY) >= 0) die ("I could open shadow?");

 printf("[-] Trying to set back uid 0 (root)\n");
 if (setuid(0)<0) die("Failed to set root uid");

 show_uid();

 printf("[-] Trying to open shadow file (need to be root)\n");
 if(open("/etc/shadow",O_RDONLY) < 0) die("Failed to open shadow");
}

Once dropped root privileges
cannot be re-acquired

Example: privilege drop

alice[/tmp]$ ls -al /tmp/privilegeDropTest
-rwsr-xr-x 1 root root 12864 Nov 3 21:10 /tmp/privilegeDropTest

alice[/tmp]$./privilegeDropTest
[*] Effective user id is: 0
[*] Real user id is: 1000
[-] Trying to open shadow file (need to be root)
[*] Done!
[-] Trying privilege drop
[*] Done!
[*] Effective user id is: 1000
[*] Real user id is: 1000
[-] Checking that shadow cannot be opened
[*] Done!
[-] Trying to set back uid 0 (root)
[=] ERROR: Failed to set root uid: Operation not permitted

