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Can we mathematically prove 
security?

Formal models of computer 
security can be used to “prove” that:

● design satisfies a set of 
security requirements

● implementation conforms to 
the design

Example: BLP model

Introduction
Formal models of security
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Automated Model checking

Model a system as a state machine 
(e.g.. BLP)

An execution is called trace

Formalize security properties as 
trace properties

Use automated tools to check that 
the property holds
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Looking for bad traces …

Trace properties: ∀ tr ∊ traces(System) . P(tr) 
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Intersection empty?

All
system
traces

Bad traces
not P(tr)



Tool for the automated analysis of 
security protocols

● Rapid prototyping
● Finding attacks 
● Provide a proof
● Explore alternative designs or 

threat models quickly

https://tamarin-prover.github.io/ 

Material and examples partially taken from: 
https://github.com/tamarin-prover/teaching
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The Tamarin prover

https://tamarin-prover.github.io/
https://github.com/tamarin-prover/teaching


High-level description of Tamarin

System specification: the specification induces set of traces

● Modeling protocol and adversary using multiset rewriting

Property specification: which are the “good” traces

● using fragment of first-order logic

Tamarin tries to

● provide a proof that all system traces are good, or
● construct a counterexample trace of the system (attack)
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Basic ingredients:

● Terms: m, k, enc(m,k), …
● Facts: model state and traces
● Special facts: Fr(t), In(t), 

Out(t), K(t), …

State of system is a multiset of facts

● Initial state is the empty multiset
● rules specify the transition rules
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Multiset rewriting 

Rules are of the form:

● l --> r
● l --[ a ]-> r

Idea:

● facts in l are consumed
● facts in r are produced
● facts in a constitute traces



Example of execution

Rules

● rule1:  [ ]      –[ Init()  ]-> [ A('5') ]
● rule2:  [ A(x) ] –[ Step(x) ]-> [ B(x) ]

Execution (one example trace)

● [ ]
● –[ Init() ]→ [ A('5') ] 
● –[ Init() ]→ [ A('5'), A('5') ]
● –[ Step('5') ]→ [ A('5'), B('5') ]

Corresponding trace: [ Init(), Init(), Step('5') ]
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Rules

● rule1:    [   ]         –[ Init()    ]-> [!C('ok'), D('1')]
● rule2:    [!C(x), D(y)] –[ Step(x,y) ]-> [D(h(y))         ]

Execution (one example trace)

● [ ]
● –[ Init()            ]→ [ !C('ok'), D('1'      ) ] 
● –[ Step('ok','1'   ) ]→ [ !C('ok'), D(h('1')   ) ]
● –[ Step('ok',h('1')) ]→ [ !C('ok'), D(h(h('1'))) ]

Trace: [Init(), Step('ok','1'), Step('ok',h('1')) ]
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Persistent facts and nested terms
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The attacker!

Security protocol
modeled with

multiset rewriting

Attacker that 
intercepts, 
modifies 

messages, use 
cryptography, …



A “symbolic” model of symmetric 
cryptography

● senc(m,k) is message m 
encrypted under key k

● sdec(senc(m,k),k) = m

Alice and Bob share k

● Both Alice and Bob can encrypt / 
decrypt messages using k
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Symmetric key cryptography

If Carol does not know k

● she cannot generate senc(m,k)
● she cannot compute sdec(m,k)

The attacker implicitly computes 
senc(m,k) and sdec(m,k) if she 
learns key k!



A minimal symmetric key example

1. k is shared between A and B

2. A generates a secret s

3. A sends senc(s,k) to B

4. B decrypts the message using k

                     senc(s,k)
 A                                                      B
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The Tamarin specification

theory SimpleExample
begin

builtins: symmetric-encryption

rule GenKey:
[ Fr(~k) ]
--[ GenKey($A,$B,~k) ]->
[ !Key($A,$B,~k) ]

rule Alice:
[ Fr(~s), !Key($A,$B,k) ]
--[ Start($A,$B,~s,k) ]->
[ Out(senc(~s,k)) ]

rule Bob:
[ !Key($A,$B,k), In(m) ]
--[ Commit($B,$A,sdec(m,k),k) ]->
[ ]

● Fr(~k) generates a fresh ~k
● $A and $B are any possible users
● !Key(A,B,k) records that k is 

shared between A and B
● Start(A,B,s,k) represents A 

starting the protocol with B with 
secret s and key k

● Commit(B,A,s,k) represents 
B completing the protocol with A 
with secret s and key k
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Sanity lemma

lemma Sanity:
 exists-trace
 " Ex A B s k #i #j.
       Start(A,B,s,k)  @ #i &
       Commit(B,A,s,k) @ #j &
       i < j
 "

We want to be sure that the 
specification does something

We check that there exists at least 
one trace where 

1. A starts the protocol with B using 
s,k

2. B completes the protocol with A 
using s,k

⇒ confirms that the protocol runs!
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Secrecy lemmas

lemma key_secrecy:
 " 
   not( /* It cannot be that */
     Ex A B k #i #j.
       GenKey(A,B,k) @ #i &
       K(k) @ #j
   )
 "

lemma message_secrecy:
 " 
   not( /* It cannot be that */
     Ex A B s k #i #j.
       Start(A,B,s,k) @ #i &
       K(s) @ #j
   )
 "

We want to prove that k and s remain 
secret

K(k) @ #j means that k is leaked 
to the attacker at time #j

The key_secrecy lemma states 
that no generated key k is ever leaked 
to the adversary

Same for s in message_secrecy
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Modelling key leakage

rule LeakKey:
 [ !Key($A,$B,~k) ]
 --[ LeakKey(~k) ]->
 [ Out(~k) ]

lemma key_secrecy_notleaked:
 “ not(
     Ex A B k #i #j.
       GenKey(A,B,k) @ #i &
       K(k) @ #j &
       not(Ex #r . LeakKey(k) @ r)
   )"

lemma message_secrecy_notleaked:
 " not(
     Ex A B s k #i #j.
       Start(A,B,s,k) @ #i &
       K(s) @ #j &
       not(Ex #r . LeakKey(k) @ r)
   )"

Keys can be leaked in practice

We can model this with an explecit 
rule LeakKey

Old lemmas fail but we can write 
lemmas that require that the key is 
not leaked

⇒ Observe that secrecy of s depends 
on the secrecy of k!
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Authentication

lemma auth:
 "
   ( All A B s k #i.  Commit(B,A,s,k) @ #i
      ==>
      ( (Ex #a. Start(A,B,s,k) @ a)
      | (Ex #r. LeakKey(k) @ r )
      )
   )
 "

We can formalize authentication by 
requiring that any Commit is 
preceded by a Start (unless the key is 
leaked)

But it does not hold here…. Why?
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Authenticated cryptography

rule Bob_v1:
[ !Key($A,$B,k), In(m) ]
--[ Commit($B,$A,sdec(m,k),k) ]->
[ ]

rule Bob_v2:
[ !Key($A,$B,k), In(senc(s,k)) ]
--[ Commit($B,$A,s,k) ]->
[ ]

Compare the two versions

Bob_v1 decrypts whatever it receives 
as m. It could be anything!

Bob_v2 checks that what it receives 
is something encrypted under k (via 
pattern matching)

⇒ Commit only when the message is 
encrypted under k!
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Injective authentication

lemma auth:
 " ( All A B s k #i.  Commit(B,A,s,k) @ #i
      ==>
      ( (Ex #a. Start(A,B,s,k) @ a)
      | (Ex #r. LeakKey(k) @ r )
      )
   )"

lemma auth_inj:
 " ( All A B s k #i.  Commit(B,A,s,k) @ #i
      ==>
      ( (Ex #a. Start(A,B,s,k) @ a & 
        (All #j . Commit(B,A,s,k)@#j ==>

    #i=#j) )
      | (Ex #r. LeakKey(k) @ r )
      )
   ) "

Suppose we want to check that each 
Commit is preceded by a different 
Start

In other words the same Start cannot 
be “reused” to Commit twice

⇒ The attacker might impersonate 
Alice after interpreting one session!
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Replay attack

1. k is shared between A and B

2. A generates a secret s

3. A sends senc(s,k) to B

4. The attacker (Carol) intercepts
and resends the same message!

5. B accepts!

                       senc(s,k)
 A                                                            B

                       senc(s,k)
 C(A)                                                       B
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Fix: challenge-response

1. B generates a random nonce n

2. A sends senc(<s,n>,k) to B

3. B decrypts the message using k 
and checks that n matches

4. The attacker (Carol) intercepts 
and resends the same message!

5. The nonce n’ is different and 
Bob rejects!

                                n

A               senc(<s,n>,k)               B
                        
                                                             

                                n’

C(A)          senc(<s,n>,k)              B
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Challenge reponse in Tamarin

rule Alice:
[ Fr(~s), !Key($A,$B,k), In(~n) ]
--[ Start($A,$B,~s,k) ]->
[ Out(senc(<~s,~n>,k)) ]

rule Bob0:
 [ Fr(~n) ] --> [ Out(~n), Bob1(~n) ]

rule Bob:
[ Bob1(~n), !Key($A,$B,k), 
  In(senc(<s,~n>,k)) ]
--[ Commit($B,$A,s,k) ]->
[ ]

                                n

A                senc(<s,n>,k)              B

This protocol satisfies injective 
authentication!
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Modelling “inverted roles”

rule GenKey_v1:
[ Fr(~k) ]
--[ GenKey($A,$B,~k) ]->
[ !Key($A,$B,~k) ]

rule GenKey_v2:
[ Fr(~k) ]
--[ GenKey($A,$B,~k) ]->
[ !Key($A,$B,~k), !Key($B,$A,~k) ]

Can A and B swap roles?

Compare v1 and v2

v1: A always starts and B always 
commits

v2: A and B can both start and 
commit

… is this a problem?
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Reflection attack

The attacker (Carol) starts two 
session impersonating A and B plays 
the two different roles in the two 
sessions (B1 and B2)

Bob accepts his own message 
thinking it is from Alice!

                                n
C(A)                                                      B1

                                n  
C(A)                                                      B2

                  senc(<s,n>,k)                 
C(A)                                                      B2

                  senc(<s,n>,k)
C(A)                                                      B1
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Session 1

Session 2



The correct protocol!

rule Alice:
[ Fr(~s), !Key($A,$B,k), In(~n) ]
--[ Start($A,$B,~s,k) ]->
[ Out(senc(<~s,~n,$A>,k)) ] 

rule Bob0:
 [ Fr(~n) ] --> [ Out(~n), Bob1(~n) ]

rule Bob:
[ Bob1(~n), !Key($A,$B,k), 
  In(senc(<s,~n,$A>,k)) ] 
--[ Commit($B,$A,s,k) ]->
[ ]
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                                n

A            senc(<s,n,A>,k)             B

It is enough to add A (or B) in the 
encrypted message to break 
symmetry.

⇒ secrecy + injective agreement


