
Trusted Computing
System Security (CM0625, CM0631) 2024-25
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Complex software systems are
(eventually) flawed

Design flaws: hard to provide the
intended security guarantees

Implementation flaws: even when
design is correct, bugs might
introduce vulnerabilities

Introduction

2

Can we mathematically prove
security?

Formal models of computer
security can be used to “prove” that:

● design satisfies a set of
security requirements

● implementation conforms to
the design

Introduction
Formal models of security

3

Example: Bell - La Padula (BLP)

Definition: Information should never
flow from a level to lower ones

● Simple security: Subjects cannot
read from objects at a higher
level

● *-property: Subjects cannot write
into objects classified at a lower
level

(plus standard DAC)

Secret

Public

write

write

read

read

write up read down

4

Example: Bell - La Padula (BLP)

Secret

Public

no write down

no read up
Forbidden!

Definition: Information should never
flow from a level to lower ones

● Simple security: Subjects cannot
read from objects at a higher
level

● *-property: Subjects cannot write
into objects classified at a lower
level

(plus standard DAC)

5

Example: Bell - La Padula (BLP)

Secret

Public

Forbidden!

no write down

no read up

Definition: Information should never
flow from a level to lower ones

● Simple security: Subjects cannot
read from objects at a higher
level

● *-property: Subjects cannot write
into objects classified at a lower
level

(plus standard DAC)

6

BLP model

BLP can be stated formally

Assume: S1, …,Sm subjects, O1, …,On
objects, A1, …,Aw access modes (e.g.,
read, write, append, …)

State: 3-tuple (b, M, f), defined as

b : current access set of triples
(Si, Oj, Ax) representing subject Si
accessing object Oj in mode Ax

M : access matrix of permitted
access modes. Mij contains modes
for subject Si accessing object Oj

f : level function assigning a security
level to subjects and objects

f(Oj) is the security level of object Oj

f(Si) is the security level of subject Si

7

BLP model

Simple security: every triple of the
form (Si, Oj, read) in the current
access set b has the property

f(Si) ≥ f(Oj)

*-property: every triple of the form
(Si, Oj, write) in the current access set
b has the property

f(Si) ≤ f(Oj)

In addition to MAC, BLP also
enforces DAC, in terms of the access
control matrix M. DAC is formalized
as follows:

ds-property: if (Si, Oj, Ax) is a current
access in b, then access mode Ax is
present in Mij. That is

(Si, Oj, Ax) ∈ b ⇒ Ax ∈ Mij

8

BLP secure state

In summary, we say that a state (b, M, f) is secure iff

Simple security: ∀ i j . (Si, Oj, read) ∈ b ⇒ f(Si) ≥ f(Oj)

*-property: ∀ i j . (Si, Oj, write) ∈ b ⇒ f(Si) ≤ f(Oj)

ds-property: ∀ i j x . (Si, Oj, Ax) ∈ b ⇒ Ax ∈ Mij

9

BLP abstract operations

Get access: initiate access to object,
i.e., add (Si, Oj, Ax) to b

Release access: release access to
object, i.e., remove (Si, Oj, Ax) from b

Change object level: change the
value of f(Oj) for some object Oj

Change subject level: Change the
value of f(Si) for some subject Si

Give access permission: grant an
access mode, i.e., add Ax to Mij

Revoke access permission: delete an
access mode, i.e., remove Ax from Mij

Create an object: add a new object Oj
with security level f(Oj)

Delete an object: remove object Oj

10

Security of abstract operations

Get access: add (Si, Oj, read) to b

f(Si) ≥ f(Oj) and read ∈ Mij

Get access: add (Si, Oj, write) to b

f(Si) ≤ f(Oj) and write ∈ Mij

Change object/current level: change
the value of f(Oj) (similarly for f(Si))

∀ i . (Si, Oj, read) ∈ b ⇒ f(Si) ≥ f(Oj)
∀ i . (Si, Oj, write) ∈ b ⇒ f(Si) ≤ f(Oj)

Revoke access permission: remove
Ax from Mij

(Si, Oj, Ax) ∉ b

When action violates the condition

● action is forbidden (error), or
● state should be updated, e.g.,

release accesses that violate the
new permissions or levels (make
the state secure)

11

BLP security proof

Secure state: state (b, M, f) is secure
if and only if every element of b
satisfies the three properties

State transition: state (b, M, f) is
changed by any operation that
changes b, M or f

Security Theorem: a system starting
from a secure state is secure iff any
operation preserves the three
properties (can be formally proved)

It is theoretically possible to prove
that an actual implementation (or
system design) is secure by proving
that any action that affects the state
of the system satisfies the three
properties

For a complex system, such a proof
can hardly cover all cases

⇒ Still, formal proof can lead to more
secure design and implementation

12

Applications of BLP model

13

Implementing BLP in RBAC (1)

Constraint on users: For each subject
s a security clearance L(s) is
assigned

Permissions: For each role r and
object o, assign read/write
permission (access matrix)

Constraint on objects: For each
object o a security classification L(o)
is assigned

The read-level of a role r, denoted
r-level(r), is the least upper bound of
the security levels of the objects for
which read is in the permissions of r

The write-level of a role r, denoted
w-level(r), is the greatest lower
bound of the security levels of the
objects for which write is in the
permissions of r

14

Implementing BLP in RBAC (2)

Constraint on role assignment: the
clearance of the subject must
dominate the r-level of the role and
be dominated by the w-level of the
role

L(S) ≥ r-level(r)

L(S) ≤ w-level(r)

The r-level of the role indicates the
least security classification that
dominates the level of objects
readable from the role

Simple security property demands
that a subject is assigned to a role
only if the subject’s clearance is at
least as high as the r-level of the role

(dually for write access, *-property)

15

Trust: confidence that system
meets specifications, e.g., through
formal analysis or code review

Trusted computing base (TCB):
part of the system enforcing a
particular policy, small enough to be
analyzed

Evaluation: assessing if system has
the claimed security properties

Trusted
systems

20

Trusted Platform Module (TPM)

TPM is a hardware module that is at
the heart of a hardware/software
approach to trusted computing

Standardized by the Trusted
Computing Group

TPM is integrated in the CPU, the
motherboard, or in smarcards

It is a hardware, tamper resistant
Trusted Computing Base (TCB)

The TPM works with TC-enabled
software, including the OS and
applications

The software can be assured that the
data it receives are trustworthy, and
the system can be assured that the
software itself is trustworthy

Three basic services: authenticated
boot, certification, and encryption

21

https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/

Authenticated boot service

Responsible for booting the entire
operating system, assuring that it is
an approved version for use

Boot happens in stages:

● Boot ROM is loaded
● Boot Block on storage is loaded
● Larger blocks are brought in,

until the full OS is loaded

At each stage, the TPM checks that
valid software has been brought in,
e.g. verifying a digital signature
associated with the software

The TPM keeps a tamper-evident log
of the loading process

⇒ a cryptographic hash function is
used to detect any tampering with
the log

22

Authenticated boot service

The tamper-evident log contains a
record that establishes exactly, which
version of the OS and which of its
modules are running

Trust boundary can be expanded to
include additional hardware and
application and utility software

⇒ approved list of hardware and
software components

The TC-enabled system checks
whether any new component

● is on the approved list
● is digitally signed
● has a serial number that has not

been revoked

⇒ hardware, system software, and
applications in a well-defined
state with approved components.

23

Certification service

A mechanism to certify the (trusted)
configuration to other parties

The TPM produces a digital
certificate by signing a description of
the configuration information using
the TPM’s private key

Other local or remote parties have
confidence that an unaltered
configuration is in use

Notice that:

● TPM is trustworthy (no need of a
further certification of the TPM)

● Only the TPM possesses this
particular private key

● TPM’s public key can be used to
verify the signature

● Hierarchical trust: TPM certifies
hardware/OS, OS can certify
applications, etc.

24

Preventing replay attacks

An attacker might

1. intercept TPM certification
2. compromise the system
3. “replay” the certification when

needed to prove trustworthiness
of the attacked system

Solution: TPM includes a random
challenge R from the requester in the
signature to prevent “replays”

TPM
SignPK(config)

SignPK(config)

TPM SignPK(R, config)

SignPK(R, config)

R

R’ R ≠ R’
reject!

25

Encryption

Enables the encryption of data in
such a way that the data can be
decrypted only by a certain machine,
and only if that machine is in a
certain (trusted) configuration

Idea: one master secret key used to
derive many encryption keys, one for
each trusted configuration

⇒ decryption is possible only in the
same configuration

Hierarchical trust: provide an
encryption key to a (certified)
application so that the application
can encrypt data

Decryption can only be done by the
desired version of the desired
application running on the desired
version of the desired OS

Even remote, if TPMs share master
keys

26

Example: protected storage

File encrypted and saved in a local
storage

The encryption key is encrypted by
the TPM using the master key and
stored together with the file

The encrypted key is associated to
the specification of hardware /
software configuration that is
authorized to access the key

Application requests to decrypt the
encrypted key:

1. TPM verifies that hardware /
software configuration matches
the required one

2. TPM decrypts the key and
passes it to the application

3. Application decrypts the file and
is trusted to discard the key

27

