
Access Control
System Security (CM0625, CM0631) 2025-26
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Definition

Access Control: Protection of
system resources against
unauthorized access

● The process regulating the use
of system resources according
to a security policy

● Access is permitted only by
authorized entities (users,
programs, processes, or other
systems) according to that
policy.

RFC 4949
Internet Security Glossary

https://tools.ietf.org/html/rfc4949#page-11

Context

Authorization
database

User

Authentication Access
Control

Resources

Auditing

Context

Authentication: Verification that the
credentials of a user or other system
entity are valid

Authorization:The granting of a right
or permission to a system entity to
access a system resource. This
function determines who is trusted
for a given purpose

Audit: An independent review and
examination of system records and
activities in order to

● test for adequacy of controls
● ensure compliance with

established policy and
operational procedures

● detect breaches in security, and
recommend changes in control,
policy, and procedures

Subjects and objects

Subject: is an entity capable of
accessing resources (objects)

● Any user or application actually
gains access to an object by
means of a process

● The process inherits the
attributes of the user, such as
the access rights

Object: is a resource to which access
is controlled. An object is an entity
used to contain and/or receive
information

Examples: pages, segments, files,
directories, mailboxes, messages,
programs, communication ports, I/O
devices.

Access rights

Read: Subject may view information
in an object; read access includes the
ability to copy or print

Write: Subject may add, modify, or
delete data in an object

Execute: Subject may execute an
object (e.g. a program)

Delete: Subject may delete an object

Create: Subject may create an object

Search: Subject may search into an
object (e.g., a query giving a partial
view of the content)

Note: one access right might imply
another one, e.g. read ⇒ search

Access control
policies

Discretionary Access Control (DAC)

Mandatory Access Control (MAC)

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

Discretionary access control (DAC)

Access matrix: access rights for each subject (row) and object (column)

 README.txt /etc/shadow Carol.pdf /bin/bash

Alice Read
Write

Read
Write

Read
Write
Execute

Bob Read Read
Execute

Carol Read Read
Write

Read
Execute

NOTE: can be sparse!

Access Control List (ACL): for each
object, lists subjects and their
permission rights
(decomposition by columns)

● Easy to find which subjects
have access to a certain object

● Hard to find the access rights
for a certain subject

Access Control Lists
vs.

Capabilities

README.txt:
Alice: Read, Write;
Bob: Read;
Carol: Read.

 /etc/shadow:
Alice: Read, Write.

Example: ACL

 README.txt /etc/shadow Carol.pdf /bin/bash

Alice Read
Write

Read
Write

Read
Write
Execute

Bob Read Read
Execute

Carol Read Read
Write

Read
Execute

Capabilities: for each subject, list
objects and access rights to them
(decomposition by rows)

● Easy to find the access rights
for a certain subject

● Hard to find which subjects
have access to a certain
object

Access Control Lists
vs.

Capabilities

Example: Capabilities

Alice:
README.txt: Read, Write;
/etc/shadow: Read, Write;
/bin/bash: Read, Write, Execute.

 Bob:
README.txt: Read;
/bin/bash: Read, Execute.

 READM
E.txt

/etc/sha
dow

Carol.p
df

/bin/bas
h

Alice Read
Write

Read
Write

Read
Write
Execute

Bob Read Read
Execute

Carol Read Read
Write

Read
Execute

Authorization table

IDEA: store an entry for each subject,
access right, and object

● Querying by subject gives
capabilities

● Querying by object gives ACLs

Subject Access right Object

Alice Read README.txt

Alice Write README.txt

Alice Read /etc/shadow

Alice Write /etc/shadow

Alice Read /bin/bash

Alice Write /bin/bash

Alice Execute /bin/bash

Bob Read README.txt

Bob Read /bin/bash

Bob Execute /bin/bash

...

DAC is … discretionary

A subject can give access to the
object it owns

In some systems, access rights can
be given with a copy flag so that
non-owners can pass the right to
other subjects

NOTE: programs typically inherits
user’s access rights

1. Attack scenario: A malware
program executed by Alice can
leak Alice’s sensitive data by
simply giving read access to
(malicious) Bob

2. Alice might erroneously give
read access to her sensitive files

⇒ Discretionary Access Control is
too flexible

Access control
policies

Discretionary Access Control (DAC)

Mandatory Access Control (MAC)

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

Mandatory Access Control (MAC)

MAC imposes rules that subjects
cannot change

Example: Alice has clearance secret
that allows her to own and access
secret files but does not allow her to
make those files accessible to
unclassified users, such as Bob.

MAC prevents:

1. Leakage due to malware that
would run with clearance secret
too, and won’t be able to
communicate towards
unclassified users

2. Leakage due to errors: Any file
created by Alice would
automatically have level secret

Example 1: Bell - La Padula (BLP)

Security levels: define the level of
security wrt a certain property, e.g.
Confidentiality.

Example: inspired from military

1. top secret
2. secret
3. confidential
4. restricted
5. unclassified

Subjects and objects are assigned to
security levels

● Clearance: the security level of
subjects

● Classification: the security level
of objects

BLP (confidentiality)

Definition: Information should never
flow from a level to lower ones

● Simple security: Subjects cannot
read from objects at a higher
level

● *-property: Subjects cannot write
into objects classified at a lower
level

… plus standard DAC!

Secret

Public

write

write

read

read

write up read down

BLP (confidentiality)

Definition: Information should never
flow from a level to lower ones

● Simple security: Subjects cannot
read from objects at a higher
level

● *-property: Subjects cannot write
into objects classified at a lower
level

… plus standard DAC!

Secret

Public

no write down no read up

Forbidden!

BLP (confidentiality)

Definition: Information should never
flow from a level to lower ones

● Simple security: Subjects cannot
read from objects at a higher
level

● *-property: Subjects cannot write
into objects classified at a lower
level

… plus standard DAC!

Secret

Public

Forbidden!

no write down no read up

Problem: covert channels

Definition: A way to indirectly
transmit information

Example: A shared resource that is
slowed down by a malicious program
might be used to encode bits:

● Slow ⇒ 0
● Fast ⇒ 1

Secret

Public

Forbidden!covert channel

Ex 2: Chinese wall

Goal: prevent conflicts of interest

● Objects belongs to company
datasets

● The company datasets belong to
conflict of interest classes

Idea: Subjects cannot access objects
from different companies that belong
the same conflict of interest class

Example:

● Bank A,
Oil company B,
Oil company C

● B and C objects are in conflict

Subject S accesses an object from B:

● S can access more B’s objects
● S cannot access C’s objects
● S can access A’s objects

Chinese wall policy (read)

Simple security: read access is
granted if object

● is in the same company dataset
as an already accessed object

or

● belongs to an entirely different
conflict of interest class

Problem with write access:

● Bank A,
Oil company B,
Oil company C

● B and C are in conflict

1. Subject S’ reads from C
2. Subject S reads from B and

writes into an A
3. Subject S’ reads from A

⇒ Conflict!

Indirect violation

Chinese wall policy (write)

*-property: write access is granted if

● access is permitted by simple
security property

and

● no object can be read which is in
a different company dataset to
the one for which write access is
requested

NOTE: This rule is very restrictive:
read/write permission is only
possible on single company datasets

In the original paper authors propose
the idea of sanitized information, i.e.,
company information that does not
require protection

Relaxed *-property:
and contains unsanitized information

https://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/brewer_nash_89.pdf

Access control
policies

Discretionary Access Control (DAC)

Mandatory Access Control (MAC)

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

Role-Based Access Control (RBAC)

DAC specifies access rights for each
subject and object

RBAC adds a new layer: roles

● Subjects are assigned to roles
● Roles have access rights to

objects

NOTE: RBAC can express DAC and
MAC policies

Role 1

Role 2

Role 3

Role 4

RBAC access matrix

Access matrix: access rights for each role (row) and object (column)

 README.txt /etc/shadow Carol.pdf /bin/bash

Administrator Read
Write

Read
Write

Read
Write
Execute

Student Read Read
Execute

Professor Read Read
Write

Read
Execute

RBAC role assignment

Role assignment: for each subject (row) and role (column)

 Administrator Student Professor

Alice x x

Bob x

Carol x

Note: we can have multiple roles per user and multiple users per role

Users establish sessions with the
roles they need to accomplish a task
(least privilege principle)

Roles can be organized as a
hierarchy:

Example:
Professor → Department Dean
Professor → Rector

Hierarchies and exclusive roles

Roles might be mutually exclusive to
enforce separation of duties

Separation of duties: if one task
requires two users to be performed

Examples:

● creating vs. authorizing an
account

● auditing vs. performing a task

Access control
policies

Discretionary Access Control (DAC)

Mandatory Access Control (MAC)

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

Attribute-Based Access Control (ABAC)

IDEA: Access regulated through
attributes

Subject attributes: name, title, age, …
SA1, …, SAK

Object attributes: author, category, …
OA1, …, OAM

Environment attributes: date, setting,
connection, …
EA1, …, EAN

For each subject s, object o and
environment e:

ATTR(s) ∈ SA1×SA2×...×SAK
ATTR(o) ∈ OA1×OA2×...×OAM
ATTR(e) ∈ EA1×EA2×...×EAN

can_access(s,o,e) =
 f(ATTR(s),ATTR(o),ATTR(e))

ABAC example

Access to online streaming

can_access(s,o,e) =
 (
 (Membership(s) == Premium)
 ∨
 (Membership(s) == Regular ∧
 Type(o) == OldRelease)
)
 ∧
 (ExpireDate(s) >= Time(e))

👍 ABAC is more flexible than RBAC

👍 ABAC can express DAC, MAC, and
RBAC

👎 Access decision is more complex

⇒ On the Web and Cloud is more and
more popular (performance is
already limited by network latency)

Exercise: define BLP with ABAC

BLP is no read-up no write-down

What attributes?

● Use security levels: clearance(s) and classification(o) are the security
levels of s and o

BLP_can_access_read(s,o,e) =
clearance(s) >= classification(o)

BLP_can_access_write(s,o,e) =
clearance(s) <= classification(o)

