Access Control

System Security (CM0625, CM0631) 2025-26
Universita Ca’ Foscari Venezia

Riccardo Focardi

www.unive.it/data/persone/5590470
secgroup.dais.unive.it

Universita
Ca'Foscari
Venezia

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Access Control: Protection of
system resources against
unauthorized access

e The process regulating the use

D eﬂ N I.t | on of system resources according

to a security policy

Access is permitted only by
authorized entities (users,
programs, processes, or other

systems) according to that
policy.

REC 4949
Internet Security Glossary

https://tools.ietf.org/html/rfc4949#page-11

Context

.
Authorization
database
Authentication |=—> NEEERE %
Control

Resources
QAuditing

Context

Authentication: Verification that the
credentials of a user or other system
entity are valid

Authorization:The granting of a right
or permission to a system entity to
access a system resource. This
function determines who is trusted
for a given purpose

Audit: An independent review and
examination of system records and
activities in order to

test for adequacy of controls
ensure compliance with
established policy and
operational procedures

e detect breaches in security, and
recommend changes in control,
policy, and procedures

Subjects and objects

Subject: is an entity capable of
accessing resources (objects)

Any user or application actually
gains access to an object by
means of a process

The process inherits the
attributes of the user, such as
the access rights

Object: is a resource to which access
is controlled. An object is an entity

used to contain and/or receive
information

Examples: pages, segments, files,
directories, mailboxes, messages,
programs, communication ports, /0
devices.

Access rights

Read: Subject may view information
in an object; read access includes the
ability to copy or print

Write: Subject may add, modify, or
delete data in an object

Execute: Subject may execute an
object (e.g. a program)

Delete: Subject may delete an object
Create: Subject may create an object

Search: Subject may search into an
object (e.g., a query giving a partial
view of the content)

Note: one access right might imply
another one, e.g. read = search

AC CcCess CO nt 0 I Discretionary Access Control (DAC)
p 0) I | C | es Mandatory Access Control (MAC)

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

Discretionary access control (DAC)

Access matrix: access rights for each subject (row) and object (column)

—
README.txt /etc/shadow Carol.pdf /bin/bash D

Alice Read Read Read

Write Write Write
Execute

Bob Read Read
Execute

Carol Read Read Read
Write Execute

NOTE: can be sparse!

Access Control Lists
VS.
Capabilities

Access Control List (ACL): for each
object, lists subjects and their
permission rights

(decomposition by columns)

e Easy to find which subjects
have access to a certain object

e Hard to find the access rights
for a certain subject

Example: ACL

ya Y

README.txt /etc/shadow = Carol.pdf /bin/bash

README.txt:
Alice: Read, Write;
.) Alice Read Read Read
Bob: Read, Write Write Write
Carol: Read. Execute
/etC/ShadOW: Bob Read Read
Alice: Read, Write. Execute
Carol Read Read Read
Write Execute

Access Control Lists
VS.
Capabilities

Capabilities: for each subject, list
objects and access rights to them
(decomposition by rows)

e Easy to find the access rights
for a certain subject

e Hard to find which subjects
have access to a certain
object

Example: Capabilities

READM /etc/sha Carol.p /bin/bas

Alice: — E.txt dow df h
README.txt: Read, Write;]
. Alice Read Read Read

/etc/shadow: Read, Write; Write Write Write
/bin/bash: Read, Write, Execute. Execute
- Bob Read Read

Bob: - Execute
README.txt: Read:;
/bin/bash: Read, Execute. Carol Read Read Read

Write Execute

Authorization table

IDEA: store an entry for each subject, Subject Access right Object

access right, and object Alice Read README .txt
Alice Write README.txt
e Querying by subject gives Alice Read /etc/shadow
capabilities Alice Write /etc/shadow

e Querying by object gives ACLs Alice Read /bin/bash

Alice Write /bin/bash

Alice Execute /bin/bash
Bob Read README.txt

Bob Read /bin/bash

Bob Execute /bin/bash

DAC is ... discretionary

A subject can give access to the 1. Attack scenario: A malware
object it owns program executed by Alice can
leak Alice’s sensitive data by
simply giving read access to
(malicious) Bob

Alice might erroneously give
read access to her sensitive files

In some systems, access rights can

be given with a copy flag so that
non-owners can pass the right to 9.
other subjects

NOTE: programs typically inherits

, , => Discretionary Access Control is
user's access rights

too flexible

ACCGS S CO nt ro I Discretionary Access Control (DAC)

Mandatory Access Control (MAC)

policies

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

Mandatory Access Control (MAC)

MAC imposes rules that subjects MAC prevents:
cannot change

1. Leakage due to malware that

Example: Alice has clearance secret would run with clearance secret
that allows her to own and access too, and won't be able to

secret files but does not allow her to communicate towards

make those files accessible to unclassified users

unclassified users, such as Bob. 2. Leakage due to errors: Any file

created by Alice would
automatically have level secret

Example 1: Bell - La Padula (BLP)

Security levels: define the level of

security wrt a certain property, e.g.

Confidentiality.

Example: inspired from military

1. top secret
2. secret

3. confidential
4. restricted

5. unclassified

Subjects and objects are assigned to
security levels

e Clearance: the security level of
subjects

e Classification: the security level
of objects

BLP (confidentiality)

Definition: Information should never
flow from a level to lower ones

e Simple security: Subjects cannot
read from objects at a higher
level

e *-property: Subjects cannot write
into objects classified at a lower
level

... plus standard DAC!

write up

write

read

write

read

% Secret

read down

BLP (confidentiality)

Definition: Information should never
flow from a level to lower ones

e Simple security: Subjects cannot
read from objects at a higher
level

e *-property: Subjects cannot write
into objects classified at a lower
level

... plus standard DAC!

% Secret
no write dowr\ no read up

Forbidden!

BLP (confidentiality)

Definition: Information should never
flow from a level to lower ones

e Simple security: Subjects cannot
read from objects at a higher
level

e *-property: Subjects cannot write
into objects classified at a lower
level

... plus standard DAC!

% Secret
no write dowr\ no read up

Forbidden!

Problem: covert channels

Definition: A way to indirectly
transmit information

% Secret
Example: A shared resource that is

slowed down by a malicious program s/\%\/\
might be used to encode bits:

covert channel Forbidden!

e Slow=0

e Fast=1 G % Public

Ex 2: Chinese wall

Goal: prevent conflicts of interest

e Objects belongs to company
datasets

e The company datasets belong to
conflict of interest classes

Idea: Subjects cannot access objects
from different companies that belong
the same conflict of interest class

Example:
e BankA,
Oil company B,
Oil company C

e B and C objects are in conflict

Subject S accesses an object from B:

e S can access more B's objects
e S cannot access C's objects
e S can access A's objects

Chinese wall policy (read)

Simple security: read access is Problem with write access:

granted if object
(

e isinthe same company dataset
as an already accessed object

or

—

e belongs to an entirely different
conflict of interest class

Bank A,

Oil company B,

Oil company C

B and C are in conflict

Subject S’ reads from C
Subject S reads from B and
writes into an A

Subject S’ reads from A

= Conflict!

Indirect violation

Chinese wall policy (write)

*-property: write access is granted if NOTE: This rule is very restrictive:

and

read/write permission is only

access is permitted by simple possible on single company datasets

security property

In the authors propose
the idea of sanitized information, i.e.,
company information that does not
reqguire protection

no object can be read which is in
a different company dataset to
the one for which write access is
requested —

Relaxed *-property:
— and contains unsanitized information

https://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/brewer_nash_89.pdf

ACCGS S CO nt ro I Discretionary Access Control (DAC)

Mandatory Access Control (MAC)

policies

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

Role-Based Access Control (RBAC)

DAC specifies access rights for each
subject and object

I

[y

RBAC adds a new layer: roles

e Subjects are assigned to roles
e Roles have access rights to
objects

I

™

NOTE: RBAC can express DAC and
MAC policies

[

RBAC access matrix

Access matrix: access rights for each role (row) and object (column)

—
README.txt /etc/shadow Carol.pdf /bin/bash D
Administrator Read Read Read
Write Write Write
Execute
Student Read Read
Execute
Professor Read Read Read

Write Execute

RBAC role assignment

Role assignment: for each subject (row) and role (column)

Administrator Student Professor
Alice X X
Bob X
Carol X

Note: we can have multiple roles per user and multiple users per role

Hierarchies and exclusive roles

Users establish sessions with the Roles might be mutually exclusive to
roles they need to accomplish a task enforce separation of duties

least privilege principle
(P 9eP Ple) Separation of duties: if one task

Roles can be organized as a requires two users to be performed
hierarchy:

Examples:
Example:

e creating vs. authorizing an
account
e auditing vs. performing a task

Professor — Department Dean
Professor — Rector

ACCGS S CO nt ro I Discretionary Access Control (DAC)
p 0) I | C | es Mandatory Access Control (MAC)

Role-Based Access Control (RBAC)

Attribute-Based Access Control (ABAC)

Attribute-Based Access Control (ABAC)

IDEA: Access regulated through For each subject s, object o and
attributes environment e:

Subject attributes: name, title, age, ... ATTR(s) e SA XSA x...xSA
SA,, w, SA, ATTR(0) € OA xOA x...xOA,

. . ATTR(e) e EA xEA x...xEA
Object attributes: author, category, ...

OA,, .., OA can_access(s,0,e) =

M
. . _ f(ATTR(s) ,ATTR(0) ,ATTR(e))
Environment attributes: date, setting,

connection, ...

EA,, ., EA,

ABAC example

Access to online streaming

can_access(s,0,e) =

(

(Membership(s) == Premium)
V
(Membership(s) == Regular A

/\>\/

Type(o) == OldRelease)

ExpireDate(s) >= Time(e))

/£ ABAC is more flexible than RBAC

/& ABAC can express DAC, MAC, and
RBAC

F Access decision is more complex

= On the Web and Cloud is more and
more popular (performance is
already limited by network latency)

Exercise: define BLP with ABAC

BLP is no read-up no write-down
What attributes?

e Use security levels: clearance(s) and classification(o) are the security
levels of s and o

BLP_can_access_read(s,0,e) =
clearance(s) >= classification(o)

BLP_can_access_write(s,o0,e) =
clearance(s) <= classification(o)

