Course Overview

Sicurezza (CT0539) 2025-26
Universita Ca' Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/sicurezza/

Objectives

Sicurezza (CT0539)

https://www.unive.it/data/course/451344/programma

This course aims at providing:

knowledge of attack and
defence techniques related to
program exploitation, system,

network and web security
skills related to securing real
systems and networks,
developed through practical
exercises

https://www.unive.it/data/course/451344/programma

Programme

Sicurezza (CT0539)

https://www.unive.it/data/course/451344/programma

Background and tools
Program analysis
Program exploitation

System and network security

Web security (server side)

Web security (client side)

https://www.unive.it/data/course/451344/programma

Material

Sicurezza (CT0539)

https://www.unive.it/data/course/451344/programma

Course official website (with
slides and on-line material):

The course is mainly based on
on-line material

For program exploitation you
can refer to J. Erickson,
Hacking, the art of exploitation,
No starch press, 2008

https://moodle.unive.it/mod/page/view.php?id=1014651
https://moodle.unive.it/mod/page/view.php?id=1014651
https://www.unive.it/data/course/451344/programma

Assessment

Sicurezza (CT0539)

https://www.unive.it/data/course/451344/programma

Written test (base mark)

Non-mandatory assignments (extra
score)

e Challenges on attacking and
securing IT systems and
networks

Bonus score with respect to the
mark of the written test

https://www.unive.it/data/course/451344/programma

Lab

Sicurezza (CT0539)

https://www.unive.it/data/course/451344/programma

Course is based on many practical
examples and exercises

We will provide docker containers
that can be run under Linux,
Windows, Mac

|dentical “ " independently
of the host operating system

e ejther
® Oruse

https://secgroup.dais.unive.it/teaching/sicurezza/testbed/
https://docs.docker.com/install/
https://secgroup.dais.unive.it/teaching/vm-with-docker/
https://www.unive.it/data/course/451344/programma

Background 1. Unix shell
and tOOIS 2. sed and regular expressions

3. Python

Introduction and Unix shell

Sicurezza (CT0539) 2025-26
Universita Ca’ Foscari Venezia

Riccardo Focardi

www.unive.it/data/persone/5590470
secgroup.dais.unive.it

Universita
7 Ca'Foscari
Venezia

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/sicurezza/

Unix shell

Unix shell allows for quickly
automating interaction with
processes and data

Knowing the shell helps
understanding interaction with
programs (processes)

We revise basic Unix shell commands
and concepts

Unix shell is the simplest interface to
the operating systems

Execute programs

Redirect input/output
Connect programs together
Run scripts

We focus on bash (Bourne-again
shell, pronounced born-again),
successor of Bourne’s shell sh

Basic commands (1)

1s: shows the content of current cd path: (change directory) moves
directory. -1 displays long format; -a working directory to path

displays hidden (dot) files
cat file: shows file content

file filename: shows the type of

file named filename cat f1 f2 f3:displays the

concatenation of f1 f2 f3
pwd: (print working directory) shows

the path of current working directory echo "hello": prints “hello”

grep word file:looks forword in
file and prints lines that contain it

mkdir name: creates a new
directory in the current working one

Basic commands (2)

man command: shows command man
page. Arrows up and down navigate,
q exits, / searches (n next hit, N
previous hit)

find path expression:looks for
files in path (recursively) matching
the specified expression

EX.:find / -name "*.c" -print
prints all the file that ends with .c

sort file: sortlines of a text file

strings file: find printable
strings in a (binary) file

Example:

§ strings /usr/bin/passwd | grep changed

password for '%s' changed by '%s'
%s: password expiry information changed.
passwd: password unchanged

$

Wildcards

* : Matches any string, including the
null string

? : Matches any single character

[...] : Matches any one of the enclosed
characters; a pair of characters
separated by a hyphen denotes a
range expression

S 1s test[6-9].7??
testl.txt test2.txt

NOTE: ‘. at the start of a filename or
immediately following a slash must
be matched explicitly, unless the shell
option dotglob is set

S 1s *bash*

ls: cannot access '*bash*’
S 1s .bash*

.bash_logout .bashrc

S shopt -s dotglob

S 1s *bash*

.bash_logout .bashrc

Input from terminal

A typical behaviour of Unix shell
commands is to take input from the
user when no file is specified

ctrl-Dis interpreted as End-of-File
(EOF) and terminates the program

Example 1:

S cat

Hello this is a test
Hello this is a test
(ctrl-D terminates)

S

Example 2 (grep):

S grep work

I'm checking what happens when
grep is run without specifying
a filename!

How does this work?

How does this work?

ah: matching line are printed
out as expected!

(ctrl-D terminates)

S

Redirection

Fundamental Unix shell mechanism
to redirect program input and output
from/to a file

When output is redirected to a file
(symbol >) any output from the
program will be written to the file

When input is redirected from a file
(symbol <) the content of the file will
be sent as input to the program

Examples:

ls > tmpfile: write the content of
the current folder into file tmpfile.
Check with cat tmpfile

grep shell < tmpfile:redirects
the content of the file to the grep
command.

NOTE: The behaviour is the same as
grep shell tmpfile

Redirection (examples, see also here)

With symbol >> we can append What happens if we redirect the
output to an existing file: output of a command that takes input

. from the terminal?
date >> tmpfile: appends current

date to file tmpfile Example (cat):
Note: overwriting is done silently so § cat > test.txt
be careful when using redirection Hello this is a test

]) of two lines
with a single > (ctrl-D)

$
date > tmpfile: overwrites!

= input is written into file test . txt!

https://asciinema.org/a/102151?speed=2

Redirecting stdout or stderr

In Unix there are three separate
input/output streams:

e stdin (0):standard input,
where the program takes input

e stdout (1):standard output,
the normal program output

e stderr (2):standard error,
where the program prints error

1> and 2> respectively redirect stdout
and stderr

Example (hide errors):

S 1s

testl.txt test2.txt

S cat test*

cat: testl.txt: Permission denied
This is readable

$ cat test* 2> /dev/null

This is readable

S cat test* 1> /dev/null

cat: testl.txt: Permission denied

Pipes

Fundamental mechanism for process
communication in Unix

Similar to redirection but works
between two programs

Channel between processes: a
process can write to the pipe and
another one can read from it

= combine commands conveniently

In the Unix Shell, pipes are specified
using symbol |

cmdl | emd2 | ... | cmdn,
executes all commands and the
output of each command i is given as
input to the next command i+1

The output of the last command is
printed on the terminal

Pipes (examples, see also here)

ls | grep shell: shows all file
names that contain word shell

ls | grep shell | sort -r:as
before but file names are sorted in
reverse alphabetical order (option -r).
Notice that in this case we have three
programs cooperating together;

ls | grep shell | grep txt:
shows all file names that contain
both shell and txt

Example:

S 1s

myshell.pdf shell.txt test.txt

S 1s | grep shell
myshell.pdf
shell.txt

S 1s | grep shell | sort -r
shell.txt
myshell.pdf

S 1s | grep shell | grep txt
shell.txt

https://asciinema.org/a/102167?speed=2

The Bandit wargame

Now you can refine your shell skills
solving levels (up to 9) of Bandit wargame:

https://overthewire.org/wargames/bandit/

