Security Design Principles

System Security (CM0625, CM0631) 2025-26 Università Ca' Foscari Venezia

Riccardo Focardi www.unive.it/data/persone/5590470 secgroup.dais.unive.it

Security design principles (1)

Simple vs. complex

Economy of mechanism: the design of security measures embodied in both hardware and software should be as <u>simple and small</u> as possible

- complex mechanisms are more vulnerable!
- complex mechanisms are hard to maintain and configure

Security design principles (2)

Permission vs. exclusion

Fail-safe default: access decisions should be based on <u>permission</u> rather than exclusion

- a mistake will tend to refuse permission (<u>safe</u> and easy to detect)
- access based on exclusion might permit unauthorised access that would be <u>hard to</u> <u>notice</u>

Security design principles (3)

Optimizations

Complete mediation: every access must be checked against the access control mechanism

- resource-intensive, but caching access decisions would ignore changes in access policy
- Example of vulnerability: web applications should <u>always</u> check access to page/resources (e.g., do not base it on just the user ID)

Security design principles (4)

Open vs. closed design

Open design: the design of a security mechanism should be open rather than secret

- open design allows for <u>expert</u> reviews
- Example: crypto algorithms and protocols are public, and only the keys are kept secret

Security design principles (5)

Single vs. separated privileges

Separation of privilege: multiple privilege attributes are required to achieve a sensitive task

- Example 1: separate privileges in organizations (e.g. 2 managers to approve transactions)
- Example 2: multi-factor user authentication requires the use of multiple techniques
- Not to confuse with least privilege

Security design principles (6)

Min vs. max privileges

Least privilege: every process and every user of the system should operate at the <u>least set of privileges</u> necessary to perform the task

- mitigates attacks
- prevents accidental exposures

Security design principles (7)

Single vs. multiple protections

Layering: use of multiple, overlapping protection approaches

- failure of one protection will not leave the system unprotected
- <u>multiple barriers</u> between an adversary and protected information or services

⇒ defense in depth

Security design principles (8)

Usability

Psychological acceptability: the security mechanisms should not interfere with the work of users

- low usability might lead users to turn off mechanisms
- security mechanisms should be transparent when possible
- if the mechanisms are counterintuitive, users might make mistakes

Security design principles (9)

Isolated vs. connected

Isolation: physical or logical isolation of critical information/resources

Examples:

- public access systems should be isolated from critical resources
- processes/files of users should be isolated from one another
- security mechanisms should be isolated from the rest of the system

Security design principles (10)

Modular vs. monolithic

Modularity: use of a modular architecture for mechanism design and implementation

- common security modules shared by applications that can be <u>checked once</u> and easily maintained
- mechanisms to protect security modules so to provide Isolation

Security design principles

Summary

- 1. Economy of mechanism
- 2. Fail-safe default
- 3. Complete mediation
- 4. Open design
- 5. Separation of privilege
- 6. Least privilege
- 7. Layering
- 8. Psychological acceptability
- 9. Isolation
- 10. Modularity

Computer Security Strategy

General principles

- Specification/policy:
 What is the security scheme supposed to do?
- Implementation/mechanisms:
 How does it do it?
- Correctness/assurance:Does it really work?

Security Policy

Ease of use versus security: security involves penalties in usability

- Access control requires to remember passwords and perhaps perform other actions
- Firewalls reduce available transmission capacity
- Virus-checking software reduces available processing power
- ...

Cost of security versus cost of failure and recovery: security is not for free

- Cost of failure and recovery should be considered
- It depends on the asset value and on the risk and cost of attacks
- business decision influenced by legal requirements

Attack trees are a methodical way of describing the security of systems, based on varying attacks

Nodes are OR or AND

- OR is possible if one child is possible
- AND is possible if all children are possible

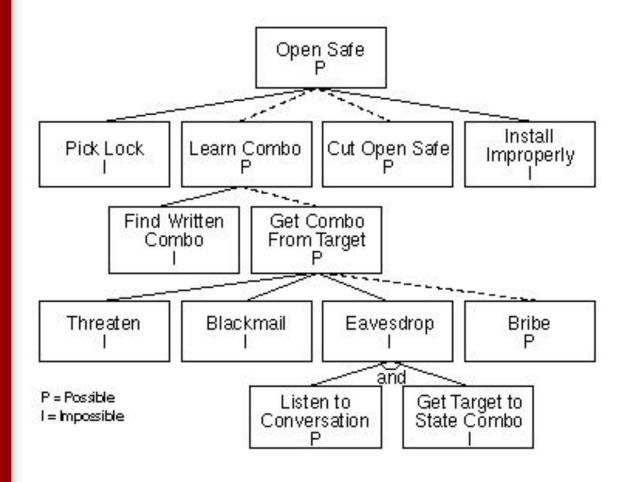


Figure 2: Possible Attacks.From https://www.schneier.com/

Values can be associated to the nodes

Example: Cost

Values propagate from leaves up (parent gets the cheapest attack)

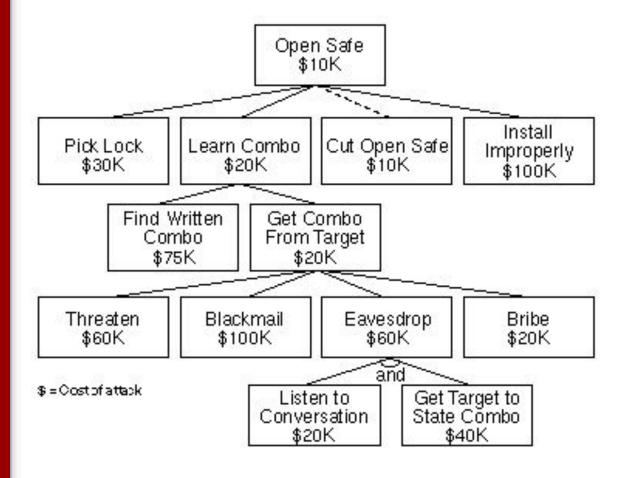


Figure 4: Cost of Attack. From https://www.schneier.com/

Evaluation

Example : All attacks less that 100K \$

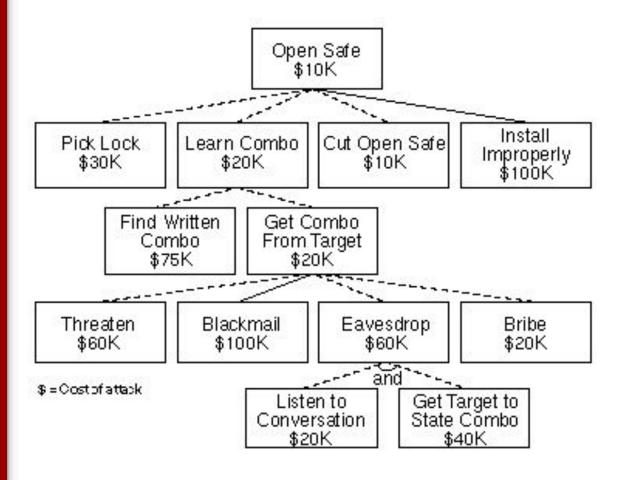


Figure 5: Attacks Less than \$100,000. https://www.schneier.com/

Extra information can be associated to the nodes

Example: Special equipment required

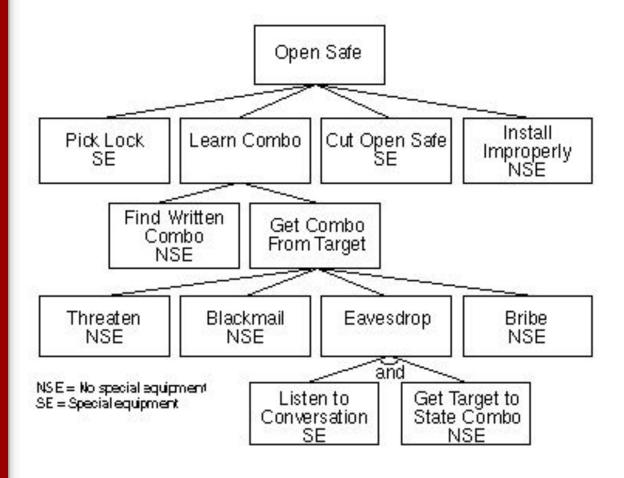


Figure 3: Special Equipment Required. https://www.schneier.com/

Evaluation

Example: Cheapest requiring no special equipment

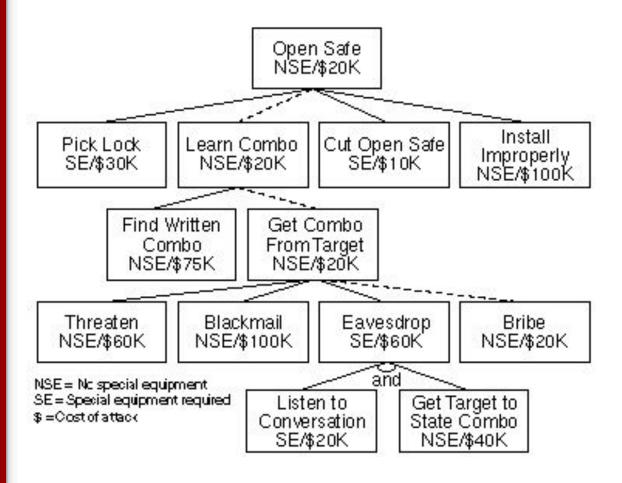


Figure 6: Cheapest NSE. https://www.schneier.com/

Computer Security Strategy

General principles

- Specification/policy:
 What is the security scheme supposed to do?
- Implementation/mechanisms:
 How does it do it?
- Correctness/assurance:Does it really work?

Security Implementation

Prevention: ideal security scheme in which no attack is successful

- Not always practical
- There might be vulnerabilities

Detection: when absolute protection is not feasible, it is still practical/useful to detect security attacks

 Example: Intrusion Detection System (IDS) **Response:** the system responds in such a way as to halt the attack and prevent further damage

Example: blacklisting IPs

Recovery: recover the system prior to the attack

• **Example**: backups

Computer Security Strategy

General principles

- Specification/policy:
 What is the security scheme supposed to do?
- Implementation/mechanisms:
 How does it do it?
- Correctness/assurance:Does it really work?

Correctness

Assurance: confidence that the system operates such that the system's security policy is enforced

- Does the security system design meet its requirements?
- 2. Does the implementation meet its specifications?
- ⇒ Formal analysis can help

Evaluation: process of examining a computer product or system with respect to certain criteria

- development of evaluation criteria that can be applied to any security system (e.g. <u>Common</u> <u>Criteria</u>)
- comparison of different solutions/products