Stream editor and regular
expressions

Sicurezza (CT0539) 2025-26
Universita Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

Universita
" Ca'Foscari
Venezia

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Stream editor sed

sed is a simple but powerful Unix tool to filter and transform text
sed is invoked as sed SCRIPT INPUTFILE
Example: replace hello with worldin file input. txt

sed 's/hello/world/' input.txt (output goes to stdout)
sed -i 's/hello/world/' input.txt (in-place, modifies input.txt)

The following commands are equivalent:

sed 's/hello/world/’ input.txt > output.txt
sed 's/hello/world/' < input.txt > output.txt
cat input.txt | sed 's/hello/world/' - > output.txt (with or without -)

sed commands

A sed script consists of one or more
sed commands

sed commands follow this syntax:
[addr]X[options]

e Xis a single-letter sed command
e [addr] line address: single line

number, regexp, or range of lines
e [options] for some commands

Delete;: command d deletes lines
sed '"1d' input.txt : deletes first line

sed '1,3d' input.txt : deletes first three
lines

Print. command p prints lines
sed "1p' input.txt : prints first line

NOTE: line is printed twice

Examples

S sed '1d" test.txt Command line option -n tells sed not
E;: g to print lines unless they are printed
line 4 explicitly
$ sed '1,3d' test.txt Example:
line 4
S sed -n '1,2p' test.txt
$ sed '1p' test.txt line 1
1ine 1 line 2
line 1
line 2
line 3
line 4

Substitution

Command s substitutes strings Option g makes substitution global

sed 's/hello/hi/' input.txt S sed 's/hello/hi/g' input.txt
hi guys hi everyone

By default substitution happens once

for each line Option i makes search case
insensitive and a number specifies

§ cat input.txt :
P which occurrence should be replaced

hello guys hello everyone

$ sed 's/HELLO/hi/i2' input.txt

S sed 's/hello/hi/' input.txt hello guys hi everyone

hi guys hello everyone

Substitution (more examples)

It is possible to use a custom
separator with substitution command

sed 's:hello:hi:' input.txt

As ford and p, it is possible to
indicate which lines should be
examined:

sed '6,7s/hello/hi/' input.txt

only applies to lines 6 and 7

Only print rows that match string:
sed -n '/hello/p' input.txt
Delete rows that match string:
sed '/hello/d' input.txt

Apply a mapping:

sed 'y/abc/ABC/'

replaces each occurrence of a,b,c
with A, B, C, respectively.

Regular expressions

Regular expressions are patterns
representing sets of strings

Useful to perform advanced searches
in which it is necessary to find strings
with a particular structure

Programs grep and sed both support
regular expressions

A is the beginning of line
Example: 1s -al | grep 'Ad’

matches all directory files in the
current directory (d is the flag that
indicates a directory file)

If we omit the * symbol, grep will
match all lines containing a d, not
necessarily in the first position

Regular expressions (2)

S indicates end of the line

. represents a single character
Example: grep '.ino' will match
names such as Nino, Pino, Gino, ...

c* represents a possibly empty,
arbitrary number of occurrences of
character c

Example: grep 'smart *card’

(smartcard, smart card, smart card,

)

. * matches an arbitrary number of
arbitrary characters

c\+ one or more occurrences of ¢
c\? zero or one occurrences of c

Notice that + and ? need to be
escaped prepending a backslash \
character

Regular expressions (3)

Note on escaping:

To find a special character like .
or * it is enough to escape it with
a backslash \ character

For characters that needs to be
escaped in regular expression
such as \+ and \? it is instead
enough to remove the backslash

[0123456789] or [0-9]
represents all digits from 0to 9

Example: [0-9]\+
a decimal number of arbitrary length

[*0-9] anything that is not a digit

Example: grep '""[*0-9]*$'
all lines that do not contain digits

Classes

[[:alnum:]] Alphanumeric [a-z A-Z 0-9] [[:lower:]] Lowercase letters [a-Z]

[[:alpha:]] Alphabetic [a-z A-Z] [[:print:]] Printable characters

(including spaces)
[[:blank:]] Blank characters (spaces

or tabs) [[:punct:]] Punctuation characters
[[:cntrl:]] Control characters [[:space:]] Spaces (including \t \n)
[[:digit:]] Numbers [0-9] [[:upper:]] Uppercase letters [A-Z]

[[:graph:]] Printable characters [[:xdigit:]] Hex digits [0-9 a-f A-F]

(excluding spaces)

Regular expressions in sed

sed supports regular expressions Back references and brackets: refer

o o to portions of the matched text
For substitutions, it is useful to refer

to the matched text. This can be done Ex.: extract the name from a mail

in two ways:
's/Dear \([*]*\) .*$/Name = \1/g'

& is substituted with the whole

, Notice that the pattern we refer to is
matched string

surrounded by \(and \), while the

Example: add world after hello reference to it is \1

sed 's/hello/& world/g Use \2, \3, ... for next references

Files for exercises are available:

ExerCISeS e at /home/rookie/Shell/ inthe

host

® asa

https://secgroup.dais.unive.it/teaching/sicurezza/testbed/
https://secgroup.dais.unive.it/wp-content/uploads/2023/09/Shell.zip

Exercise 1: pretty printing

Given a list of telephone numbers of the form 123456789 use sed to rewrite

them as (123)456-789

Anything in the wrong format should be left unmodified.

S cat numeri.txt
123456789
392948291
321582923
321904984

Not a number
hello

S sed ... numeri.txt
(123)456-789
(392)948-291
(321)582-923
(321)904-984

Not a number

hello

Exercise 2: break ROT13

The following text (rot.txt file) has been encrypted by replacing each letter with
the one 13 positions ahead in the alphabet (modulo 26) aka

Break it with sed!

Hint: Check out command y

jryy gbar thlf, 1lbh oebxr n
pvcure jvgu frq!

https://en.wikipedia.org/wiki/ROT13

Exercise 3: filename conversion

Use sed to select and convert all file names with suffix . html given as output
by Is into capital letters with suffix .HTM

Non-matching files should be omitted

Hint 1: Check out command y
Hint 2: You can concatenate commands as: sed ‘cmd1;cmd2’

S 1s S 1s | sed ...
document.pdf MYPAGE .HTM
myPage.html TEST.HTM

test.html

Exercise 4: data extraction

Use sed to extract full user names (5th field) from /etc/passwd/
NOTE: fields are separated by :

S sed ... /etc/passwd
root

daemon

bin

Mailing List Manager

ircd

Gnats Bug-Reporting System (admin)
nobody

systemd Network Management

Extra: GNU extensions

There are some handy GNU \L and \U in s commands convert to
extensions that allows for shorter lowercase and uppercase,

regexps (do not work in BSD unix) respectively

c\{n\} repeats c ntimes Example:

Example: § cat input.txt

hello guys hello everyone

[[:digit:]]\{10\}
S sed 's/hello/\U&/g' input.txt

is a 10 digits number HELLO guys HELLO everyone

