
Stream editor and regular
expressions
Sicurezza (CT0539) 2025-26
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Stream editor sed

sed is a simple but powerful Unix tool to filter and transform text

sed is invoked as sed SCRIPT INPUTFILE ...

Example: replace hello with world in file input.txt

sed 's/hello/world/' input.txt (output goes to stdout)
sed -i 's/hello/world/' input.txt (in-place, modifies input.txt)

The following commands are equivalent:

sed 's/hello/world/' input.txt > output.txt
sed 's/hello/world/' < input.txt > output.txt
cat input.txt | sed 's/hello/world/' - > output.txt (with or without -)

sed commands

A sed script consists of one or more
sed commands

sed commands follow this syntax:

[addr]X[options]

● X is a single-letter sed command
● [addr] line address: single line

number, regexp, or range of lines
● [options] for some commands

Delete: command d deletes lines

sed '1d' input.txt : deletes first line

sed '1,3d' input.txt : deletes first three
lines

Print: command p prints lines

sed '1p' input.txt : prints first line

NOTE: line is printed twice

Examples

$ sed '1d' test.txt
line 2
line 3
line 4

$ sed '1,3d' test.txt
line 4

$ sed '1p' test.txt
line 1
line 1
line 2
line 3
line 4

Command line option -n tells sed not
to print lines unless they are printed
explicitly

Example:

$ sed -n '1,2p' test.txt
line 1
line 2

Substitution

Command s substitutes strings

sed 's/hello/hi/' input.txt

By default substitution happens once
for each line

$ cat input.txt
hello guys hello everyone

$ sed 's/hello/hi/' input.txt
hi guys hello everyone

Option g makes substitution global

$ sed 's/hello/hi/g' input.txt
hi guys hi everyone

Option i makes search case
insensitive and a number specifies
which occurrence should be replaced

$ sed 's/HELLO/hi/i2' input.txt
hello guys hi everyone

Substitution (more examples)

It is possible to use a custom
separator with substitution command

sed 's:hello:hi:' input.txt

As for d and p, it is possible to
indicate which lines should be
examined:

sed '6,7s/hello/hi/' input.txt

only applies to lines 6 and 7

Only print rows that match string:

sed -n '/hello/p' input.txt

Delete rows that match string:

sed '/hello/d' input.txt

Apply a mapping:

sed 'y/abc/ABC/'

replaces each occurrence of a,b,c
with A, B, C, respectively.

Regular expressions

Regular expressions are patterns
representing sets of strings

Useful to perform advanced searches
in which it is necessary to find strings
with a particular structure

Programs grep and sed both support
regular expressions

^ is the beginning of line

Example: ls -al | grep '^d'

matches all directory files in the
current directory (d is the flag that
indicates a directory file)

If we omit the ^ symbol, grep will
match all lines containing a d, not
necessarily in the first position

Regular expressions (2)

$ indicates end of the line

. represents a single character
Example: grep '.ino' will match
names such as Nino, Pino, Gino, …

c* represents a possibly empty,
arbitrary number of occurrences of
character c
Example: grep 'smart *card'

(smartcard, smart card, smart card,
…)

.* matches an arbitrary number of
arbitrary characters

c\+ one or more occurrences of c

c\? zero or one occurrences of c

Notice that + and ? need to be
escaped prepending a backslash \
character

Regular expressions (3)

Note on escaping:

● To find a special character like .
or * it is enough to escape it with
a backslash \ character

● For characters that needs to be
escaped in regular expression
such as \+ and \? it is instead
enough to remove the backslash

[0123456789] or [0-9]
represents all digits from 0 to 9

Example: [0-9]\+
a decimal number of arbitrary length

[^0-9] anything that is not a digit

Example: grep '^[^0-9]*$'
all lines that do not contain digits

Classes

[[:alnum:]] Alphanumeric [a-z A-Z 0-9]

[[:alpha:]] Alphabetic [a-z A-Z]

[[:blank:]] Blank characters (spaces
or tabs)

[[:cntrl:]] Control characters

[[:digit:]] Numbers [0-9]

[[:graph:]] Printable characters
(excluding spaces)

[[:lower:]] Lowercase letters [a-z]

[[:print:]] Printable characters
(including spaces)

[[:punct:]] Punctuation characters

[[:space:]] Spaces (including \t \n)

[[:upper:]] Uppercase letters [A-Z]

[[:xdigit:]] Hex digits [0-9 a-f A-F]

.

Regular expressions in sed

sed supports regular expressions

For substitutions, it is useful to refer
to the matched text. This can be done
in two ways:

& is substituted with the whole
matched string

Example: add world after hello
sed 's/hello/& world/g'

Back references and brackets: refer
to portions of the matched text

Ex.: extract the name from a mail

's/Dear \([^]*\) .*$/Name = \1/g'

Notice that the pattern we refer to is
surrounded by \(and \), while the
reference to it is \1

Use \2, \3, ... for next references

Exercises
Files for exercises are available:

● at /home/rookie/Shell/ in the
testbed host

● as a zip file

https://secgroup.dais.unive.it/teaching/sicurezza/testbed/
https://secgroup.dais.unive.it/wp-content/uploads/2023/09/Shell.zip

Exercise 1: pretty printing

Given a list of telephone numbers of the form 123456789 use sed to rewrite
them as (123)456-789

Anything in the wrong format should be left unmodified.

$ cat numeri.txt
123456789
392948291
321582923
321904984
Not a number
hello

$ sed ... numeri.txt
(123)456-789
(392)948-291
(321)582-923
(321)904-984
Not a number
hello

Exercise 2: break ROT13

The following text (rot.txt file) has been encrypted by replacing each letter with
the one 13 positions ahead in the alphabet (modulo 26) aka ROT13

Break it with sed!

Hint: Check out command y

jryy qbar thlf, lbh oebxr n
pvcure jvgu frq!

https://en.wikipedia.org/wiki/ROT13

Exercise 3: filename conversion

Use sed to select and convert all file names with suffix .html given as output
by ls into capital letters with suffix .HTM

Non-matching files should be omitted

Hint 1: Check out command y
Hint 2: You can concatenate commands as: sed ‘cmd1;cmd2’

$ ls
document.pdf
myPage.html
test.html

$ ls | sed ...
MYPAGE.HTM
TEST.HTM

Exercise 4: data extraction

Use sed to extract full user names (5th field) from /etc/passwd/
NOTE: fields are separated by :

$ sed ... /etc/passwd
root
daemon
bin
...
Mailing List Manager
ircd
Gnats Bug-Reporting System (admin)
nobody
systemd Network Management

Extra: GNU extensions

There are some handy GNU
extensions that allows for shorter
regexps (do not work in BSD unix)

c\{n\} repeats c n times

Example:

[[:digit:]]\{10\}

is a 10 digits number

\L and \U in s commands convert to
lowercase and uppercase,
respectively

Example:

$ cat input.txt
hello guys hello everyone

$ sed 's/hello/\U&/g' input.txt
HELLO guys HELLO everyone

